cho tam giác ABA vuông tại A đường cao AH
a) CM tam giác ABC và tam giác HAC đồng dạng
b) Tính chu vi và diện tích tam giác ABC biết AC=15 cm ĐC=9cm
Cho tam giác abc vuông tại a, đường cao ah. a)cm tam giác abc đồng dạng với tam giác hac b)kẻ hk vuông góc với ba tại k. chứng minh KH^2=KA.KB c)cho ac=10cm, ch=8cm. tính ah và diện tích tam giác abc\
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC đồng dạng với ΔHAC
b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có
\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔKHB đồng dạng với ΔKAH
=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)
=>\(KH^2=KA\cdot KB\)
c: Ta có: ΔAHC vuông tại H
=>\(HC^2+HA^2=AC^2\)
=>\(HA^2=10^2-8^2=36\)
=>\(HA=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)
BC=BH+CH
=4,5+8
=12,5(cm)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Biết \(AB=24\) \(cm\), \(AC=32\) \(cm\). Đường trung trực \(BC\) tại \(I\) cắt cạnh \(AC\) tại \(K\). Tính góc \(HAC\), chu vi tam giác \(CIK\), diện tích tam giác \(CIK\).
Ta có \(\widehat{HAC}=\widehat{B}\) (cùng phụ với \(\widehat{C}\))
Mà \(\widehat{B}=\tan^{-1}\left(\dfrac{AC}{AB}\right)=\tan^{-1}\left(\dfrac{32}{24}\right)=\tan^{-1}\left(\dfrac{4}{3}\right)\approx53,13^o\)
Nên \(\widehat{HAC}\approx53,13^o\)
Ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40\) cm
\(\Rightarrow IB=IC=20cm\)
Ta có \(CH=\dfrac{AC^2}{BC}=\dfrac{32^2}{40}=25,6cm\)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=19,2cm\)
Do vậy \(\dfrac{CI}{CH}=\dfrac{IK}{AH}\Rightarrow IK=\dfrac{CI.AH}{CH}=\dfrac{20.19,2}{25,6}=15cm\)
Mặt khác \(\dfrac{CI}{CH}=\dfrac{CK}{CA}\Rightarrow CK=\dfrac{CI.CA}{CH}=\dfrac{20.32}{25,6}=25cm\)
\(\Rightarrow C_{CIK}=CI+CK+IK\) \(=20+15+25=60cm\)
Mặt khác, \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.24.32=384cm^2\)
Lại có \(\Delta CIK~\Delta CAB\left(g.g\right)\) \(\Rightarrow\dfrac{S_{CIK}}{S_{CAB}}=\left(\dfrac{IK}{AB}\right)^2=\left(\dfrac{15}{24}\right)^2=\dfrac{25}{64}\)
\(\Rightarrow S_{CIK}=\dfrac{25}{64}S_{CAB}=\dfrac{25}{64}.384=150cm^2\)
Cho tam giác ABC vuông tại A, đường cao AH ,H thuộc BC
a) CM tam giác ABC đồng dạng với tam giác HAC
b) CM tam giác HBA đồng dạng với tam giác HAC từ đó suy ra AH^2=BH.HC
c) Kẻ đường p/g BE của tam giác ABC (E thuộc AC).Biết BH=9cm, HC=16cm.Tính độ dài các đoạn thẳng AE,EC
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
Cho tam giác ABC vuông tại A có AB=12cm, AC=16cm. Vẽ đường cao AH
a. CM: tam giác HBA đồng dạng với tam giác ABC
b. Tính Diện tích HBA / Diện tích HAC
c. Tia phân giác của góc B cắt AC và AH tại M và N, có HI//BN. CM: AN^2 = NI. NC
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) là góc chung, \(\widehat{AHB}=\widehat{BAC}=90^o\)
=> \(\Delta HBA~\Delta ABC\) (g.g) (1)
b) Xét \(\Delta HAC\) và \(\Delta ABC\) có:
\(\widehat{C}\) là góc chung, \(\widehat{AHC}=\widehat{BAC}=90^o\)
=> \(\Delta HAC~\Delta ABC\) (g.g) (2)
Từ (1) và (2) suy ra \(\Delta HBA~\Delta HAC\)
=> \(\frac{S_{\Delta HBA}}{S_{\Delta HAC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{12}{16}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Cho tam giác ABC vuông tại A đường cao AH, H thuộc BC
a) CM tam giác ABC đồng dạng tam giác HAC
b) CM AH2= BH.HC
c) Kẻ phân giác BE của tam giác ABC E thuộc AC. Biết BH=9cm,HC=16 CM, tính độ dài AE,EC
a) Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)
b) Xét tam giác ABC và tam giác HBA có :
\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)
Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )
Suy ra tam giác HBA đồng dạng với tam giác HAC
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)
c) Do \(AH^2=BH\times HC\)
\(\Leftrightarrow AH^2=9\times16\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :
\(AH^2+HC^2=AC^2\)
\(\Leftrightarrow12^2+16^2=AC^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=\sqrt{400}\)
\(\Leftrightarrow AC=20\left(cm\right)\)
Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)
Do BE là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)
\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)
Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)
Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH=4cm, CH=9cm. Gọi I và K lần lượt là hình chiếu của H lên AB và AC a. Chứng minh tứ giác AIHK là hình chữ nhật b. Cm tam giác AKI đồng dạng với tam giác ABC c. Tính diện tích của tam giác ABC
a: góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hcn
b: AIHK là hcn
=>góc AIK=góc AHK=góc C
=>ΔAIK đồng dạng với ΔACB
1.Giải phương trình : 3x - 15 = 2x(x - 5)
2.Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 9cm, CH = 16cm.
a)CM: tam giác ABC đồng dạng với tam giác HAC
b)Tính AB
c)Tia pg góc B cắt AH và AC lần lượt tại I và K. CM: AI = AK
3.Cho tam giác nhọn ABC, hai đường cao BD, CE. Biết góc A = 60o SABC = 120cm2 . Tính SADE
1. \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{5;\frac{3}{2}\right\}\)
a. Xét \(\Delta ABC\)và \(\Delta HAC\)có:
Góc C: chung (gt)
Góc HAC = Góc ABC ( cùng phụ với góc ACB)
\(\Rightarrow\Delta ABC\infty\Delta HAC\)
b.Ta có: \(\Delta ABC\infty\Delta HAC\)(cmt)
\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)
cho tam giác abc vuông tại a đường cao ah , biết ab=15cm , ac=20cm a) cm tam giác hba đồng dạng tam giác abc . tam giác hac đồng dạng tam giác abc . b)tính ah,bh,ch . c) gọi bd là tia phân giác của góc abc . tính ad,dc . d)gọi e,f là chân đường vuông góc kẻ từ h xuống ad và ac . tứ giác aehf là hình gì . e)chứng minh ae.ab=af.ac
Vẽ dùm mình cái hình và phần e
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: AD=7,5cm; CD=12,5cm
Cho Tam giác ABC vuông tại A. Kẽ đường cao AH( H thuộc BC) .Chứng Minh Tam Giác ABC đồng dạng vs HAC Tính diện tích Tam giác ABC biết BA=7,2cm,hc=10,8 cm
Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
BA^2=HB*HC
=>HB(HB+10,8)=7,2^2
=>HB^2+10,8HB-7,2^2=0
=>HB=3,6cm
=>BC=14,4cm
\(AC=\sqrt{14.4^2-7.2^2}=\dfrac{36}{5}\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{36\sqrt{3}}{5}\cdot7.2\simeq44,89\left(cm^2\right)\)