a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
cho tam giác ABC vuông tại A (AB<AC),đường ca AH(H thuộc BC).
1 CM: tam giác HBA đồng dạng tam giác ABC và BA^2=BH.BC.
2.kẻ phân giác Be cuat góc ABC(E thuộc AC ) , BE cắt AH tại I .CM tam giác HBI đồng dạng tam giác ABE.
3. CM AI=AE
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
cho tam giác ABC cân tại A , có AB=12cm , AC=16cm kẻ đường cao AH (H thuộc BC)
a)chứng minh tam giác HBA đồng dạng tam giác ABC
b)tính độ dài đoạn thẳng BC,AH
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BH.BC
b/ Vẽ tia phân giác của góc ABC cắt AH tại I, cắt AC tại E. Chứng minh IH/IA = BI/BE
c/ Từ E kẻ đường thẳng song song với AH cắt tia BA tại P. Gọi M là giao điểm của PE và CB. Chứng minh PC2 = AH.PM + CE.CA
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), trung tuyến AM. biết AB=6cm,AC=8cm
a,tính độ dài BC, AH
b, chứng minh tam giác HAC đồng dạng với tam giác ABC và tam giác ABH đồng dạng với tam giác CAH
c, tính diện tích tam giác AHM
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
Cho tam giác ABC vuông tại A, đường cao AH
a) CM: tam giác ABC đồng dạng tam giác HBA, từ đó suy ra: AB.AH = BH.AC
b) Tia phân giác góc ABC cắt AH tại I (i). Biết BH=3cm; AB=5cm. Tính AI (ai), IH (ih)
c) Tính diện tích tam giác AHB
Cho ABC tam giác vuông tại A, đường cao AH. a)Chứng minh tam giác ABC đồng dạng với tam giác HBA b)Chứng minh AH mũ 2 = H .CHc)Gọi D và E là hình chiếu của H trên AB và AC. Cho biết BH = 4cm, CH = 16cm, hãy tính độ dài DE. d)Kẻ trung tuyến AM của tam giác ABC. Tính tỉ số diện tích của tam giác AMH và tam giác ABC khi biết BH =4cm,CH 16cm
MN giúp mình với ạ. Mình cảm ơn !
Cho tam giác ABC vuông tại A biết AB = 9 cm,AC = 12 cm .Vẽ đường cao AH a.Chứng minh tam giác CHA đồng dạng với tam giác CAB b.chứng minh AC²= BC×HC c. Tính độ dài AH