phân tích đâ thức thành nhân tử
x^2-y^-2x-2y
18x^2-36xy+18y^2-72z
Phân tích đa thức thành nhân tử: 18x2 - 36xy + 18x2 - 72z2
\(18x^2-36xy+18x^2-72z^2\)
\(=36x^2-36xy-72z^2\)
\(=36\left(x^2-xy-2z^2\right)\)
phân tích đa thức thành nhân tử
x^2-16-y^2+8y
Thu gọn
2x(3x+1)+(x+3)(2x-5)
(x+5)^2-(4x-1)(4x+1)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)
phân tích đa thức thành nhân tử
x^2-4y^2+x+1
tìm x
x^3-2x^2-10x=0
Bài 2:
Sửa đề: \(x^3-3x^2-10x=0\)
\(\Leftrightarrow x\left(x^2-3x-10\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-2\end{matrix}\right.\)
phân tích các đa thức sau thành nhân tử
x^2-9x-y^2-9y
\(x^2-9x-y^2-9y\)
\(=\left(x^2-y^2\right)-\left(9x+9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-9\right)\)
phân tích đa thức thành nhân tử
x mũ 4 + x mũ 2 y mũ 2 cộng y mũ 4
x^4+x^2y^2+y^4
=x^4+2x^2y^2+y^4-x^2y^2
=(x^2+y^2)^2-x^2y^2
=(x^2-xy+y^2)(x^2+xy+y^2)
phân tích thành nhân tử
x^4+ 2x^3+ 2x^2+ 2x +1
x^2- 2x -4y^2- 4y
a) x4 + 2x3 + 2x2 + 2x + 1
=[ (x2)2 + 2.x2.x + x2 ] + (x2 + 2.x.1 + 12)
=(x2 + x)2 + (x + 1)2
=[x(x + 1)]2 + (x + 1)2
=x2(x + 1)2 + (x + 1)2
=(x2 + 1)(x + 1)2
b) x2 - 2x - 4y2 - 4y
= [x2 - (2y)2] - 2(x - 2y)
= (x - 2y)(x + 2y) - 2(x - 2y)
= (x + 2y - 2)(x - 2y)
phân tích đa thức thành nhân tử
x^4-10x^2y^2+25-4x^2y^2-16xy-16
2x^m+n x^m +x^m+2n
Phân thức đa thức thành nhân tử
x\(^4\)+x\(^3\)+2x\(^2\)+x+1
\(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)
Dễ thấy \(x^2+1>0\); \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) nên ta không thể phân tích thêm được nữa.
Vậy \(x^4+x^3+2x^2+x+1=\left(x^2+1\right)\left(x^2+x+1\right)\).
Phân tích đa thức thành nhân tử
x^2-4y^2+x+2y
x2 - 4y2 + x + 2y
= ( x2 - 4y2 ) + ( x + 2y )
= ( x - 2y ) ( x + 2y ) + ( x + 2y )
= ( x + 2y ) ( x - 2y + 1 )