Tam giác ABC cân tại A có \(\widehat{A}\) \(=40^o\) thì góc ngoài tại đỉnh C bằng:
A. \(40^o\) B. \(90^o\) C. \(100^o\) D. \(110^o\)
1) Cho tam giác ABC cân tại đỉnh A qua A vẽ đường thẳng d song song với BC. Trên đường thẳng d và các cạnh AB, AC lần lượt lấy các điểm D, E, F sao cho C và D thuộc cùng một nửa mặt phẳng bờ AB và DE=DF. Chứng minh rằng \(\widehat{AED}\)= \(\widehat{AFD}\)
2) Cho tam giác ABC có \(\widehat{A}=30^o\);\(\widehat{B}=40^o\); AD là đường phân giác. Đường thẳng vuông góc với AD tại A cắt BC tại E. Tính giá trị của CE :(AB+AC-BC)
3) cho tam giác \(\widehat{ABC}=40^o\); \(\widehat{ACB}=30^o\). Bên ngoài tam giác đó dựng tam giác ADC có \(\widehat{ACD}=\widehat{CAD}=50^o\)Chứng minh rằng tam giác BAD cân.
Cho tứ giác ABCD có:
\(\widehat{A}=78^o;\widehat{B}=115^o\) góc ngoài tại đỉnh C bằng 102o. Tính D
Gọi góc ngoài đỉnh C là \(\widehat{C}'\)
Ta có: \(\widehat{C}+\widehat{C}'=180^o\)
\(\Rightarrow\widehat{C}=180^o-\widehat{C}'=180^o-102^o=78^o\)
Tổng của bốn góc trong tứ giác là:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{D}=360^o-\left(78^o+115^o+78^o\right)\)
\(\Rightarrow\widehat{D}=89^o\)
góc C=180-102=78 độ
góc D=360 độ-78 độ-115 độ-78 độ=89 độ
Cho\(\Delta ABC\)có \(\widehat{A}=a^o\left(0< a< 90^o\right)\). Các phân giác BD, CE cắt nhau tại O. Tia phân giác góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt BO tại N.
a) Tính số đo\(\widehat{BOC}\)
b) Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c) Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
cho \(\Delta ABC\)có \(\widehat{A=90^o}\)\(\left(0< a< 90^o\right)\). Các phân giác BD, CE cắt nhau tại O. Tia phân giác góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt tia BO tại N.
a) Tính số đo \(\widehat{BOC}\)
b) Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Xét tam giác ABC có :
A + ABC + ACB = 180 *
=> ABC + ACB = 180* - a
Mà BC là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Mà CE là phân giác ACB
=> ACE = BCE = \(\frac{ACB}{2}\)
=> ECB + DBC = \(\frac{ACB+ABC}{2}\)= \(\frac{180-a}{2}\)
Xét tam giác OBC có :
OBC + OCB + BOC = 180*
=> BOC = 180* - ( OBC + OCB)
=> BOC = 180* - \(\frac{180-a}{2}\)
=> BOC =\(\frac{a}{2}\)(dpcm)
cho tam giác ABC có góc B =\(40^o\)góc C\(=30^o\)bên ngoài tam giác ABC dựng tam giác ADC cân tại D và ADC= \(80^o\)CMR tam giác BAD cân
Cho tam giác ABC cân tại A có góc A bằng 100o , BC=a, AC=b. Về phía ngoài tam giác ABC vẽ tam giác ABD cân ở D có góc ADB = 140o. Tính chu vi tam giác ABD theo a và b.