tìm 5 số hữu tỉ xem giữa 1/2004 và 1/2003
tìm 5 số hữu tỉ nằm giữa 2 số hữu tỉ 1/2004 và 1/2003
\(\frac{1}{2004}=\frac{10.2003}{10.2003.2004},\frac{1}{2003}=\frac{10.2004}{10.2004.2003}\)
5 số: \(\frac{10.2003+1}{10.2003.2004},\frac{10.2003+2}{10.2003.2004},......,\frac{10.2003+5}{10.2003.2004}\)
a)a/b > c/d (b > 0, d > 0). Chứng minh rằng c/d < c + a/d + b. Từ đó suy ra giữa hai số hữu tỉ x > y bao giờ cũng có vô số số hữu tỉ.
b) Tìm 5 số hữu tỉ lớn hơn 1/2004 đồng thời nhỏ hơn 1/2003
Tìm số hữu tỉ , biết rằng: \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
a) Tìm 3 số hữu tỉ nằm giữa -1 phần 2 và -1 phần 3
b) Tìm 5 số hữu tỉ nằm giữa -1 phần 5 và 1 phần 5
hãy chứng tỏ rằng t=0,5.(2007^2005-2003^2003)là số nguyên
b,A=1986^2004-1/1000^2004 ko là số nguyên
c, CMR khi viết dưới dạng thập phân thì số hữu tỉ (9/11-0,81)^2004 có ít nhất 4000 chữ số 0 đầu tiên sau dấu phảy
Tìm số hữu tỉ , biết rằng: \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+1-\dfrac{x}{2004}\)
\(\Leftrightarrow\left(\dfrac{2-x}{2002}+1\right)=\left(\dfrac{1-x}{2003}+1\right)+\left(1-\dfrac{x}{2004}\right)\)
=>2004-x=0
=>x=2004
so sánh hai số hữu tĩ
x=2002/2003 và y =2003/2004
b)x=-2002/2003 và y= 2005/-2004
2) Tìm các phân số có tử là 3 , lớn hơn -2/7 va nhỏ hơn -2/9
1) Áp dụng BĐT \(\frac{a}{b}>\frac{a-m}{b-m}\) với \(\frac{a}{b}< 1\) .Dễ dàng chứng minh Bđt trên, áp dụng vào ta có:
a) \(x=\frac{2002}{2003}=\frac{2002-1+1}{2003-1+1}=\frac{2003-1}{2004-1}< \frac{2003}{2004}\)
Với \(\frac{a}{b}=\frac{2003}{2004};\frac{a-m}{b-m}=\frac{2003-1}{2004-1}\)
Từ đó ta có: x < y
b) Vì đây là phân số âm nên bé hơn phân số dương nên ta có BĐT: \(\frac{a}{b}>\frac{c}{d}\Leftrightarrow\frac{-a}{b}< \frac{-c}{d}\)
Áp dụng vào bài toán trên với \(\frac{a}{b}=\frac{2002}{2003}< 1\)và \(\frac{c}{d}=\frac{2005}{2004}>1\)
Nên \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{-a}{b}>\frac{-c}{d}\)hay x > y
Bài 1 :
a, Ta có : \(x=\frac{2002}{2003}=1-\frac{1}{2003}\)
\(y=\frac{2003}{2004}=1-\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow1-\frac{1}{2003}< 1-\frac{1}{2004}\)
\(\Rightarrow x< y\)
b, Ta thấy cả 2 vế đều có dấu âm nên ta rút gọn dấu âm đi thì được :
\(x=\frac{2002}{2003}\) \(y=\frac{2005}{2004}\)
Lúc này :
Ta có : \(y=\frac{2005}{2004}>1=\frac{2003}{2003}>\frac{2002}{2003}=x\)
Vì khi so sánh dương sẽ đối ngược với so sánh âm :
\(\Rightarrow\)Khi trả lại dấu âm thì tất nhiên \(x=\frac{-2002}{2003}>y=\frac{2005}{-2004}\)
Vậy \(x>y\)
Bài 2 :
Ta quy đồng các phân số trên như sau :
\(\frac{-2}{7}=\frac{-6}{21}\) \(\frac{-2}{9}=\frac{-6}{27}\)
Gọi các phân số thỏa mãn điều kiện trên là x .
Ta có : \(\frac{-6}{21}< x< \frac{-6}{27}\)
\(\Rightarrow x\in\left\{\frac{-6}{22};\frac{-6}{23};\frac{-6}{24};\frac{-6}{25};\frac{-6}{26}\right\}\)
Ta rút gọn và dấu của các phân số như sau ( nếu không rút gọn được thì cúng đừng chuyển dấu ) :
\(x\in\left\{\frac{3}{-11};\frac{-6}{23};\frac{3}{-12};\frac{-6}{25};\frac{3}{-13}\right\}\)
Vậy các phân số thỏa mãn đề bài là : \(\frac{3}{-11};\frac{3}{-12};\frac{3}{-13}\).
Câu 1: (4điểm) Cho m là số nguyên có dạng m= 3n + 5 m có thể nhận các giá trị nào trong các giá trị sau? Vì sao? m = 11; m = 2003; m = 2004; m = 2005 b) Xét xem số A = 10^2005 + 10^2004 + 1^2003 + 2004 có chia hết cho 3; cho 5; cho 9 không?Vì sao
Viết 5 số hữu tỉ xem giữa 2 số 2/3 và 3/4
\(\dfrac{2}{3}=\dfrac{2\times24}{3\times24}=\dfrac{48}{72}\\ \dfrac{3}{4}=\dfrac{3\times18}{4\times18}=\dfrac{54}{72}\\ \)
5 số phải tìm là : \(\dfrac{49}{72},\dfrac{50}{72},\dfrac{51}{72},\dfrac{52}{72},\dfrac{53}{72}\)