tứ giác ABCD có góc A=65 độ , góc B=117 độ , góc C = 71 độ . Tinh số đo góc ngoài tại đỉnh D
tứ giác ABCD có góc A =65 độ;góc B=117 độ;góc C=71 độ.Tính số đo góc ngoài đỉnh C
Số đo góc ngoài đỉnh C là:
\(180^0-71^0=109^0\)
Cho tứ giác ABCD có A=65 độ, B=117 độ, C=68 độ. Tính số đo góc ngoài tại đỉnh D
Số đo góc D là: 360o - 65o - 117o - 68o = 110o
Số đo góc ngoài đỉnh D: 180o - 110o = 70o
Số đo góc ngoài tại đỉnh D là:
\(180^0-\left(360^0-65^0-117^0-68^0\right)=70^0\)
Cho tứ giác ABCD có góc A = 65 độ, góc B = 117 độ, góc C = 71 độ. Tính số đo của góc D =?
a 126 độ
b 63 độ
c 119 độ
d 107 độ
Bài 10: Cho tứ giác ABCD có A 65 ;B 117 ;C 71 . Số đo góc ngoài tại đỉnh D bằng:
A. 1130
B. 1070
C. 730
D. 830
tứ giác ABCD có góc A=57 độ,góc C=110 độ,góc D=75 độ .tính số đo góc ngoài tại đỉnh B
Số đo góc ngoài tại đỉnh B là:
\(180^0-360^0+57^0+110^0+75^0=62^0\)
Cho tứ giác ABCD có A ^ = 50 ° ; B ^ = 117 ° ; C ^ = 71 ° . Số đo góc ngoài tại đỉnh D bằng:
A. 113 °
B. 107 °
C. 73 °
D. 83 °
Đáp án cần chọn là: C
C D x ^ là góc ngoài đỉnh D.
Tứ giác ABCD có: D ^ = 360 ° - A ^ + B ^ + C ^ = 360 ° - 65 ° + 117 ° + 71 ° = 107 °
Vì A D C ^ và C D x ^ là hai góc kề bù nên
C D x ^ = 180 ° - D ^ = 180 ° - 107 ° = 73 °
Tứ giác ABCD có \(\widehat{A}=65^0,\widehat{B}=117^0,\widehat{C}=71^0\). Tính số đo góc ngoài tại đỉnh D ?
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{0}\)(Định lí tổng các góc trong tứ giác)
\(\Rightarrow\)\(\widehat{D}=360^{0}-(\widehat{A}+\widehat{B}+\widehat{C})\)
\(=360^{0}-(65^{0}+117^{0}+71^{0}) =107^{0}\)
Gọi \(\widehat{D_{1}}\) là góc ngoài tại đỉnh D của tứ giác ABCD. Ta có:
\(\widehat{D}+\widehat{D_{1}}=180^{0}\) (\(\widehat{D}\) và \(\widehat{D_{1}}\) là hai góc kề bù)
\(\Rightarrow\) \(\widehat{D_{1}}=180^{0}-\widehat{D}\)
\(=180^{0}-107^{0}=73^{0}\)
Vậy số đo góc ngoài tại đỉnh D của tứ giác ABCD là 730
Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(65^o+117^o+71^o+\widehat{D}=360^o\)
\(253^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-253^o=107^o\)
\(\Rightarrow\) Góc ngoài của \(\widehat{D}=180^o-107^o=73^o\)
Vậy số đo góc ngoài tại đỉnh D là \(73^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^O\) (định lí tứ giác)\
\(\Rightarrow\widehat{D}=360^o-65^o-117^o-71^o\)
\(\Rightarrow\widehat{D}=107^o\)
Gọi \(\widehat{D_1}\) là góc ngoài tại đỉnh D của tứ giác ABCD
\(\Rightarrow\widehat{D}+\widehat{D_1}=180^o\) (kề bù)
\(\Rightarrow\widehat{D_1}=180^o-107^o\)
\(\Rightarrow\widehat{D_1}=73^o\)
tứ giác ABCD có góc A=110 độ; góc B=100 độ. Các đường phân giác của góc ngoài tại đỉnh C và D cắt nhau ở E. Góc CED có số đo là?
Tứ giác \(ABCD\) có góc ngoài tại đỉnh \(A\) bằng \(65^\circ \), góc ngoài tại đỉnh \(B\) bằng \(100^\circ \), góc ngoài tại đỉnh \(C\) bằng \(60^\circ \). Tính số đo góc ngoài tại đỉnh \(D\).
Số đo góc ngoài tại đỉnh \(D\) là: \(360^\circ - \left( {65^\circ + 100^\circ + 60^\circ } \right) = 135^\circ \)