Rút gọn \(H=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x lớn hơn hoặc = 2
1. Rút gọn
A=\(\frac{5-\sqrt{5}}{\sqrt{5}-1}\)
B=\(\sqrt{x+2\sqrt{2x+4}}+\sqrt{x-2\sqrt{2x+4}}\)(x lớn hơn hoặc bằng 2)
\(A=\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{5\sqrt{5}+5-5-\sqrt{5}}{\sqrt{5^2}-1}=\frac{5\sqrt{5}-\sqrt{5}}{5-1}=\frac{4\sqrt{5}}{4}=\sqrt{5}\)
Rút gọn
a.\(\left(2\sqrt{x}+\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
b. \(\left(\sqrt{3x}+\sqrt{2x}\right)\left(3\sqrt{x}-\sqrt{6x}\right)\)
c.\(\left(\frac{4}{3}\sqrt{3}+\sqrt{2}\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{3}}\right)-2\)
d.\(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)(x,y lớn hơn hoặc bằng 0)
e.\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+\sqrt{y}\right)\) (x,y lớn hơn hoặc bằng 0)
rút gọn H=\(\sqrt{x+2\sqrt{2x-4}}\) +\(\sqrt{x-2\sqrt{2x-4}}\)với x>2
Vì hai vế đều dương nên bình phương hai vế, ta được:
\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)
\(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)
\(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)
=2x + 2√ (x-4)^2 = 2x + 2|x-4|
Đến đây bạn tự làm tiếp nha (với x>2)
\(\sqrt{x+2\sqrt{x-4}}+\sqrt{x-2\sqrt{2x-4}}\)với x lớn hơn hoặc bằng 2
đk : x ≥ 2
Bạn bình phương 2 vế, thu gọn đc:
3√[x(x−2)(x+1)] ≤ 2x2−6x−2
<=> 3√[(x2−2x)(x+1)] ≤ 2(x2−2x) − 2(x+1)
Chia 2 vế cho (x+1), đặt t= căn((x2−2x)/(x+1)), t≥ 0 ta đc:
2t^2 - 3t - 2 ≥ 0 => t ≥ 2
<=> x^2 - 2x ≥ 4x + 4
<=> x^2 - 6x -4 ≥ 0
<=> x ≥ 3+√13
P/s: Tham khảo nhé
\(\sqrt{x+2\sqrt{x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x+2\sqrt{\left(\sqrt{x}\right)^2-2^2}}+\sqrt{x-2\sqrt{\left(\sqrt{2x}\right)^2-2^2}}\)
\(=\sqrt{x+2\left(\sqrt{\left(\sqrt{x}\right)-2}\right)^2}+\sqrt{x-2\left(\sqrt{\left(\sqrt{2x}\right)-2}\right)^2}\)
\(=\sqrt{x+2.\left|\sqrt{x}-2\right|}+\sqrt{x-2.\left|\sqrt{2x}-2\right|}\)
\(=\sqrt{x+2.\left(\sqrt{x}-2\right)}+\sqrt{x-2.\left(\sqrt{2x}-2\right)}\)
\(=\sqrt{x+2\sqrt{x}-4}+\sqrt{x-2\sqrt{2x}+4}\)
\(=\left(\sqrt{x+2\sqrt{x}-4}\right)^2+\left(\sqrt{x-2\sqrt{2x}+4}\right)^2\)
\(=x+2\sqrt{x}-4+x-2\sqrt{2x}+4\)
\(=2x+2\sqrt{x}-2\sqrt{2x}\)
\(=2x+2\sqrt{x}-2\sqrt{2}.\sqrt{x}\)
\(=2x+\sqrt{x}\left(2-2\sqrt{2}\right)\)
Rút gọn biểu thức : A=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
ĐKXĐ: \(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
Rút gọn biểu thức
A=\(\sqrt{x+2\sqrt{2x-4}+\sqrt{x-2\sqrt{2x-4}}}\)( với x >=2)
Tính hoặc rút gọn giá trị biểu thức
\(\sqrt{2x+2\sqrt{x^2-4}}\) Với \(\hept{\begin{cases}x>2\\\sqrt{x-2}+\sqrt{x+2}=\sqrt{7}\end{cases}}\)
\(\sqrt{2x+2\sqrt{x^2-4}}\)
\(\sqrt{x-2+2\sqrt{x-2}\sqrt{x+2}+x+2}\)\(\)
\(\sqrt{\left(\sqrt{x-2}+\sqrt{x+2}\right)^2}\)
\(\left|\sqrt{x-2}\right|+\left|\sqrt{x+2}\right|\)
\(\sqrt{x-2}+\sqrt{x+2}\)
\(=\sqrt{7}\)
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) với \(x\ge0;x\ne4;x\ne36\)
Rút gọn biểu thức A
Sửa đề: x-4
\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)
Rút gọn biểu thức sau với x \(\ge\) 0
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)
\(=-\sqrt{2x}-2\sqrt{x}+8\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)
\(=\left(3+9-6\right)\sqrt{2x}+18\)
\(=6\sqrt{2x}+18\)