\(H=\sqrt{x+2\sqrt{2\left(x-2\right)}}+\sqrt{x-2\sqrt{2\left(x-2\right)}}\)
\(H=\sqrt{x-2+2\sqrt{2\left(x-2\right)}+2}+\sqrt{x-2-2\sqrt{2\left(x-2\right)}+2}\)
\(H=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(H=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
* Trường Hợp 1: \(\sqrt{x-2}\ge\sqrt{2}\) => \(H=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
* Trường Hợp 2: \(\sqrt{x-2}< \sqrt{2}\) => \(H=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
Nguyễn Hoàng Tiến làm thế là gần đúng hết rồi
trường hợp 2 điều kiện của nó phải là : \(0\le\sqrt{x-2}\le\sqrt{2}\)