(3x-4)*(x-1)^3=0
Giải pT
1) x^3-5x^2+3x+1=0
2) x^4-3x^3+4x^2-3x+1=0
3) 3x^3+2x^2-4x-1=0
4) x^4+x^3-13x^2-x+10=0
5) x^4-2x^3-13x^2+14x+24=0
6) 3x^3+x^2-5x-3=0
cái bài này tìm nghiệm là ra mà bạn
câu trả lời của thu hương rất hay!
Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không
hiihhi
giải pt
a, 2x^3++3x^2-8x-12=0
b, x^3-4x^2-x+4=0
c,x^3-x^2-x-2=0
d,x^4-3x^3+3x^2-x=0
e,(x+1)(x^2-2x+3)=x^3+1
g,x^3+3x^2+3x+1=4x+4
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow x^2\left(2x+3\right)-4\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\pm2\end{cases}}\)
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại
2/x-3 = 1/x+2
5/3x-2 - 1/x-4 =0
3/x+4 = 2/2x+1
7/3x-4 - 3/3x-3 =0
\( a,\dfrac{2}{{x - 3}} = \dfrac{1}{{x + 2}}\left( {x \ne 3;x \ne - 2} \right)\\ \Leftrightarrow 2\left( {x + 2} \right) = x - 3\\ \Leftrightarrow 2x + 4 = x - 3\\ \Leftrightarrow x = - 7\left( {TM} \right)\\ b,\dfrac{5}{{3x - 2}} - \dfrac{1}{{x - 4}} = 0\left( {x \ne \frac{2}{3}; \ne 4} \right)\\ \Leftrightarrow 5\left( {x - 4} \right) - \left( {3x - 2} \right) = 0\\ \Leftrightarrow 5x - 20 - 3x + 2 = 0\\ \Leftrightarrow 2x = 18\\ \Leftrightarrow x = 9\left( {TM} \right)\\ c,\dfrac{3}{{x + 4}} = \dfrac{2}{{2x + 1}}\left( {x \ne - 4;x \ne - \frac{1}{2}} \right)\\ \Leftrightarrow 3\left( {2x + 1} \right) = 2\left( {x + 4} \right)\\ \Leftrightarrow 6x + 3 = 2x + 8\\ \Leftrightarrow 4x = 5\\ \Leftrightarrow x = \dfrac{5}{4}\left( {TM} \right)\\ d,\dfrac{7}{{3x - 4}} - \dfrac{3}{{3x - 3}} = 0\left( {x \ne \frac{4}{3};x \ne 1} \right)\\ \Leftrightarrow 7\left( {3x - 3} \right) - 3\left( {3x - 4} \right) = 0\\ \Leftrightarrow 21x - 21 - 9x + 12 = 0\\ \Leftrightarrow 12x = 9\\ \Leftrightarrow x = \dfrac{3}{4}\left( {TM} \right) \)
4 * ( x + 10 ) +5 = 2 * ( 3x + 10 - 2
5 * (x-2) -3 = 2* (x-1)+9
5x*(x-3)-2*(3-x)=0
2x*(3x-3)+4=3x(2x+1)-1
(x-4)(x+1)-x2 +1=0
(3x-2)2 - (x+5)2 =0
4*(x+1)=3+2x
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
Câu 1. Giải các phườn trình sau:
a, 3x+6=0
b, 2x-10=0
c, 3x-7=11
d, 3x-9=0
e, 3x(2-x) =15(x-2)
f, (x+5)(x+4)=0
g, x(x+4)=0
h, (2x -4)(x-2)=0
i, (x+1/5)(2x-3)=0
k, x²-4x=0
m, 4x²-1=0
n, x²-6x+9=0
l, (3x-5)²-(x+4)²=0
o, 7x(x+2)-5(x+2)=0
p, 3x(2x-5)-4x+10=0
q, (2-2x)-x²+1=0
r, x(1-3x)=5(1-3x)
s, 2x-3/4+x+1/6=3
t, x-3/4-2x+1/3=x/6
u, x+1/13+x+2/12=x+3/11+x+4/10
v, 2x+1/15+2x+2/14=2x+3/13+2x+4/12
Giúp e nha mn. E cảm ơn trc ạ!
e, 3x(2-x) =15(x-2)
\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy..
f, (x+5)(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Vậy..
g, x(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
,h, (2x -4)(x-2)=0
\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
i, (x+1/5)(2x-3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)
k, x²-4x=0
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
m, 4x²-1=0
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
n, x²-6x+9=0
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)
<=> x=3
l, (3x-5)²-(x+4)²=0
\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)
\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy ..
o, 7x(x+2)-5(x+2)=0
\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)
Vậy....
p, 3x(2x-5)-4x+10=0
\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)
\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...
q, (2-2x)-x²+1=0
\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)
\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy ....
r, x(1-3x)=5(1-3x)
\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)
s, 2x-3/4+x+1/6=3
\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)
r, x(1-3x)=5(1-3x)
➜x(1-3x)-5(1-3x)=0
➜(x-5)(1-3x)=0
➜\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)
Mk lười lắm mai nha!!!~~~~~~~~~~~~
Làm dần:
a, 3x+6=0
➜3x=-6
➜x=2
b, 2x-10=0
➜2x=10
➜x=5
c, 3x-7=11
➜3x=11+7
➜3x=18
➜x=6
d, 3x-9=0
➜3x=9
➜x=3
Giải phương trình :
a)(2x-5)^3-(3x-4)^x+(x+1)^3=0
b)(x-1)^3+(2x-3)^3+(3x-5)^3 - 3(x-1)(2x-3)(3x-5) = 0
c)(x^2+3x-4)^3 + (3x^2+7x+4)^3 = (4x^2+10x)^3
Giải pt:
a)(x^2-1)(x^2+4x+3)=192
b)x^5-x^4+3x^3+3x^2-x+1)=0
c)x^4+3x^3+4x^2+3x+1=0
a)
\(\left(x^2-1\right)\left(x^2+4x+3\right)=\left(x-1\right)\left(x+1\right)\left[\left(x+2\right)^2-1\right]=\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)\)
\(\left[\left(x-1\right)\left(x+3\right)\right]\left[\left(x+1\right)\left(x+1\right)\right]=\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
dặt x^2+2x-1=t(*)
(a) \(\Leftrightarrow\left(t-2\right)\left(t+2\right)=192\) \(\Leftrightarrow t^2-4=192\Rightarrow t^2=196\Rightarrow\left\{\begin{matrix}t=-14\\t=14\end{matrix}\right.\)
Thay t vào (*) => x (tự làm)
a) (x-1)(x+1)(x+1)(x+3)=192. \(\Leftrightarrow\) (x+1)2(x-1)(x+3)=192 \(\Leftrightarrow\) (x2+2x+1) (x2+2x-3)=192 Đặt x2+2x+1=t thì x2+2x-3=t-4 ta có t(t-4)=192 \(\Leftrightarrow\) t2-4t-192=0 \(\Leftrightarrow\) t=-12 hoặc t=16 Với t=-12 thì (x+1)2=-12 ( vô lí ) Với t=16 thì (x+1)2=16 \(\Leftrightarrow\) x=-5 hoặc x=3 b) x\(^5\)+x4-2x4-2x3+5x3+5x2-2x2-2x+x+1=0 \(\Leftrightarrow\) x4(x+1)-2x3(x+1)+5x2(x+1)-2x(x+1)+(x+1)=0 \(\Leftrightarrow\) (x+1)(x4-2x3+5x2-2x+1)=0 \(\Leftrightarrow\) x=-1 ( CM x4-2x3+5x2-2x+1 vô nghiệm ) c) x4-x3-2x3+2x2+2x2-2x-x+1=0 \(\Leftrightarrow\) x3(x-1)-2x2(x-1)+2x(x-1)-(x-1)=0 \(\Leftrightarrow\) (x-1)(x3-2x2+2x-1)=0 \(\Leftrightarrow\) (x-1)(x-1)(x2-x+1)=0 \(\Leftrightarrow\) x-1=0 ( vì x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0 với mọi x) \(\Leftrightarrow\) x=1
Ở phần b chứng minh vô nghiệm là ( x\(^4\)-2x3+x2)+(3x2-3x+\(\frac{3}{4}\))+\(\frac{5}{4}\)=0 \(\Leftrightarrow\) (x2-x)2+3(x+\(\frac{1}{2}\))2+\(\frac{5}{4}\)=0 ( vô lí)
giải phương trình sau
2, (x+3)(x+5)+(x+3)(3x-4)=0
3, (x+6)(3x-1)+x+6=0
4, (x+4)(5x+9)-x-4=0
5, (1-x)(5x+3)=(3x-7)(x-1)
6, 2x(2x-3)=(3-2x)(2-5x)
\(2.\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\\ \Leftrightarrow x^2+5x+3x+15+3x^2-4x+9x-12=0\\ \Leftrightarrow x^2+3x^2+5x+3x-4x+9x+15-12=0\\\Leftrightarrow 4x^2+13x+3=0\\\Leftrightarrow 4\left(x^2+\frac{13}{4}x+\frac{3}{4}\right)=0\\\Leftrightarrow x^2+\frac{13}{4}x+\frac{3}{4}=0\\ \Leftrightarrow x^2+\frac{1}{4}x+3x+\frac{3}{4}=0\\\Leftrightarrow x\left(x+\frac{1}{4}\right)+3\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left(x+3\right)\left(x+\frac{1}{4}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x+\frac{1}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là: \(S=\left\{-3;-\frac{1}{4}\right\}\)
\(3.\left(x+6\right)\left(3x-1\right)+x+6=0\\ \Leftrightarrow3x^2-x+18x-6+x+6=0\\ \Leftrightarrow3x^2+18x=0\\ \Leftrightarrow3x\left(x+6\right)=0\\\Leftrightarrow \left[{}\begin{matrix}3x=0\\x+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0;-6\right\}\)
\(4.\left(x+4\right)\left(5x+9\right)-x-4=0\\\Leftrightarrow 5x^2+9x+20x+36-x-4=0\\ \Leftrightarrow5x^2+28x+32=0\\\Leftrightarrow 5\left(x^2+\frac{28}{5}x+\frac{32}{5}\right)=0\\ \Leftrightarrow x^2+\frac{28}{5}x+\frac{32}{5}=0\\\Leftrightarrow x^2+\frac{8}{5}x+4x+\frac{32}{5}=0\\ \Leftrightarrow x\left(x+\frac{8}{5}\right)+4\left(x+\frac{8}{5}\right)=0\\\Leftrightarrow \left(x+4\right)\left(x+\frac{8}{5}\right)=0\\ \left[{}\begin{matrix}x+4=0\\x+\frac{8}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-\frac{8}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là:\(S=\left\{-4;-\frac{8}{5}\right\}\)