ab + bc + ca = abc
GGiúp mình với !!!!!!
Cho a,b,c>0 và ab + bc + ca +abc = 4
Chứng minh \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
Giúp mình với. Mình cảm ơn trước nha.
Ta có: \(VT=\sqrt{1ab}+\sqrt{1bc}+\sqrt{1ca}\)
\(\le\frac{1+ab}{2}+\frac{1+bc}{2}+\frac{1+ca}{2}\) (cô si "ngược")
\(=\frac{3+ab+bc+ca+abc}{2}-\frac{abc}{2}=\frac{7}{2}-\frac{abc}{2}\)
Dấu "=" xảy ra khi \(ab=bc=ca=1\Leftrightarrow a=b=c=1\)
Thay vào,ta có: \(VT\le\frac{7}{2}-\frac{abc}{2}=\frac{7}{2}-\frac{1}{2}=\frac{6}{2}=3=VP^{\left(đpcm\right)}\)
Vậy ..
tìm tất cả số nguyên tố có 2 c/s: ab; bc;ca với a; b; c là các c/s đôi một khác nhau sao cho tổng ab+ba+ca là 1 số chính phương
Các số ab; bc; ca; ab+ba+ca không phải là nhân đâu mình không viết được dấu gạch trên đầu
Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)
Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.
Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121
Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố
Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7
và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3
và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...
ai giúp mình với
Phân tích đa thức thành nhân tử
ab(a+b)+bc(b+c)+ca(c+a)+2abc
ab(a+b)+bc(b+c)+ca(c+a)+3abc
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a\right)\)
\(=\left(a+b+c\right)\left(ab+bc\right)+ca\left(c+a\right)\)
\(=b.\left(a+b+c\right)\left(a+c\right)+ca\left(c+a\right)\)
\(=\left(a+c\right)\left[b.\left(a+b+c\right)+ca\right]\)
\(=\left(a+c\right)\left(ab+b^2+bc+ca\right)\)
\(=\left(a+c\right)\left[a\left(b+c\right)+b\left(b+c\right)\right]\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ac\right)\)
Tham khảo nhé~
Cho tam giác ABC cân tại A (AB > BC) . Trên tia đối của tia CA llấy điểm D sao cho CD = CA . Kẻ AH vuông góc với BC tại H . Kẻ Điều kiện vuông góc với đường thẳng BC tại K .Bạn chỉ cần vẽ hình hộ mình thôi
cho dãy tỉ số ab+bc/a+b=bc+ca/b+c=ca+ab/c+a
cmr a=b=c
giải giúp mình 45 phút nữa mình đi học rồi
Cho a+b+c=2 ; ab+bc+ca=1 ; abc=0
Tìm a , b , c .
Giùm mình với , mình gấp lắm ! Cảm ơn ạ !
Do abc=0 nên 1 trong a,b,c=0 .Giả sử a=0 ,khi ấy ta có:
ab+bc+ac=0+bc+0 =1 nên suy ra bc=1 do đó c,b thuộc(1;1)(-1;-1);
mà a+b+c=2 nên b+c=2,mà b,c khác 0 nên b,c thuộc(1;1);
Vậy a=0,b=1,c=1(DPCM)
CHÚC BẠN HỌC TỐT
vẽ tam giác ABC vuông tại A có AB>AC, M là điểm tuỳ ý trên BC. Qua M kẻ Mx vuông góc với BC, cắt AB tại I, cắt CA tại D
giúp mình pls
Cho ba điểm A, B, C ko thẳng hàng. Gọi M N, P theo thứ tự là trung điểm của các đoạn thẳng AB, BC, CA. Hãy vẽ các đường trung trực của các đoạn thẳng AB, BC, CA. Có nhận xét gì về 3 đường trung trực trên?
Giúp mình với!
3 dường này đồng quy tại tâm đường tròn ngoại tiếp của tam giác
Cho các số a, b, c không âm. Chứngminh rằng:
a + b + c >= √ab + √bc + √ca
Giúp mình với ạ, mình cảm ơn. •~•
Áp dụng bất đẳng thức cô si vào 3 số a,b,c không âm ta có:
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Rightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)( dpcm )
Ta có: \(\dfrac{AB}{AN}=\dfrac{6}{3}=2\)
\(\dfrac{AC}{AM}=\dfrac{8}{4}=2\)
Do đó: \(\dfrac{AB}{AN}=\dfrac{AC}{AM}\)(=2)
Xét ΔABC và ΔANM có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)