\(\sqrt{4+\sqrt{18}}-\frac{\sqrt{15}-\sqrt{5}}{\sqrt{5}}\) Tính, ghi rõ cách giải
\(\frac{\left(5+\sqrt{24}\right)\cdot\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}\)
Tính ghi rõ cách giải
\(\frac{\left(5+\sqrt{24}\right)\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}=\frac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2.\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}\)
\(=\frac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}\)
\(=\frac{\left(25-24\right)\left(\sqrt{3}-\sqrt{2}\right)^2.\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{30}-11\sqrt{2}}\)\(=\frac{\left(\sqrt{3}-\sqrt{2}\right)^3}{9\sqrt{30}-11\sqrt{2}}\)
Đến đây k biết làm
Cho A = \(\frac{2x+15\sqrt{x}+18}{x+3\sqrt{x}-18}+\frac{3x+4\sqrt{x}+1}{2x-3\sqrt{x}-5}-\frac{8x-15\sqrt{x}}{2x\sqrt{x}-11x+5\sqrt{x}}\)
Tính A tại \(x=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Rút gọn các phân thức sau:
a/ \(\frac{3\sqrt{6}-\sqrt{2}}{1-3\sqrt{3}}\)
b/ \(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
c/ \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
d/ \(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{5}-\sqrt{6}}\)
e/ \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}\)
f/ \(\frac{6\sqrt{2}-4}{\sqrt{2}}\)
g/ \(\frac{6-5\sqrt{3}}{\sqrt{3}}\)
Các bn nhớ giải kỹ, rõ ràng hộ mk vs nha. Bn nào đúng, rõ ràng mk sẽ tick cho
a)\(\frac{3\sqrt{6}-\sqrt{2}}{1-3\sqrt{3}}=\frac{3\sqrt{3}.\sqrt{2}-\sqrt{2}}{1-3\sqrt{3}}=\frac{\sqrt{2}.\left(3\sqrt{3}-1\right)}{-\left(3\sqrt{3}-1\right)}=-\sqrt{2}\)
b)\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}=\frac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2.\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{5}}{2}\)
c)\(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}\)
d)\(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{5^2.6}-\sqrt{6^2.5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\sqrt{5}-\sqrt{30}.\sqrt{6}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\left(\sqrt{5}-\sqrt{6}\right)}{\sqrt{5}-\sqrt{6}}=\sqrt{30}\)
e)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{2^2.3}-\sqrt{3^2.2}}{\sqrt{6}}=\frac{\sqrt{6}.\sqrt{2}-\sqrt{6}.\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{6}.\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}}=\sqrt{2}-\sqrt{3}\)
f)\(\frac{6\sqrt{2}-4}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{16}}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{2}.2\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}.\left(6-2\sqrt{2}\right)}{\sqrt{2}}=6-2\sqrt{2}\)
g)\(\frac{6-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{36}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.2\sqrt{3}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.\left(2\sqrt{3}-5\right)}{\sqrt{3}}=2\sqrt{3}-5\)
1,826-y/\(1,826-\frac{y^2}{\sqrt{12,04}}:\sqrt{18}\cdot\left(\sqrt{15}-\frac{2,3+\frac{5}{3\sqrt{5}}\cdot7}{0,0598\sqrt{15}+\sqrt[3]{6}}\right)=\frac{7}{4}\)
\(\sqrt{x+5+4\sqrt{x+1}}=x+1\)
GIẢI PHƯƠNG TRÌNH. GHI RÕ CÁCH GIẢI GIÙM MÌNH NHE CÁC MEM
Rút gọn phương trình đc
\(\left(\sqrt{x+1}+2\right)^2=x+1\)
Xét 2 trường hợp 1 cái là bằng căn của x+1, 1 cái là bằng âm căn của x+1.
rồi giải pt là ra.
Kết luận là X=0
Giải giùm mình nha
TÍNH:
a/ \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)
b/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
A) \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
b) \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)
c) \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
d) \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)
e)\(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)
g)\(\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
a) Ta có: \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
\(=\sqrt{3}\left(2+\sqrt{16}-\sqrt{25}-\sqrt{81}\right)\)
\(=\sqrt{3}\left(2+4-5-9\right)\)
\(=-8\sqrt{3}\)
b) Ta có: \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)
\(=\left(\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)\)
\(=7-5=2\)
c) Ta có: \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\cdot\left|\sqrt{3}-1\right|\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
d) Ta có: \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)
\(=\sqrt{2}\cdot\left(5+\sqrt{9}-\sqrt{49}-\sqrt{144}\right)\)
\(=\sqrt{2}\cdot\left(5+3-7-12\right)\)
\(=-11\sqrt{2}\)
e) Ta có: \(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)
\(=\left(\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)\)
\(=3-5=-2\)
g) Ta có: \(\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\)
\(=\left(\sqrt{3}-1\right)\cdot\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\cdot\left|\sqrt{3}+1\right|\)
\(=\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1>0\))
\(=3-1=2\)
Thực hiện phép tính
1)\(\frac{\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}+\sqrt{2}}{\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}+\sqrt{5}}\)
2)\(\left(4+\sqrt{15}\right)\left(10-\sqrt{6}\right)-\sqrt{4-\sqrt{15}}\)
3)\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
4)\(\frac{2\sqrt{3-\sqrt{5+\sqrt{13-\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
5)\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
\(\frac{\sqrt{7-\sqrt{5}}-\sqrt{7+\sqrt{5}}}{\sqrt{7-2\sqrt{11}}}+\sqrt{3-2\sqrt{2}}\)
\(\sqrt{25x-50}=\sqrt{9x-18}+4\)
\(\left(3+\frac{3-\sqrt{3}}{\sqrt{3-1}}\right).\left(3-\frac{\sqrt{15}+\sqrt{6}}{\sqrt{5}+\sqrt{2}}\right)\)