Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Anh Tran

A) \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)

b) \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)

c) \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

d) \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)
e)\(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)

g)\(\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

Nguyễn Lê Phước Thịnh
13 tháng 8 2020 lúc 11:34

a) Ta có: \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)

\(=\sqrt{3}\left(2+\sqrt{16}-\sqrt{25}-\sqrt{81}\right)\)

\(=\sqrt{3}\left(2+4-5-9\right)\)

\(=-8\sqrt{3}\)

b) Ta có: \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)

\(=\left(\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)\)

\(=7-5=2\)

c) Ta có: \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\cdot\left|\sqrt{3}-1\right|\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)(Vì \(\sqrt{3}>1\))

\(=3-1=2\)

d) Ta có: \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)

\(=\sqrt{2}\cdot\left(5+\sqrt{9}-\sqrt{49}-\sqrt{144}\right)\)

\(=\sqrt{2}\cdot\left(5+3-7-12\right)\)

\(=-11\sqrt{2}\)

e) Ta có: \(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)

\(=\left(\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)\)

\(=3-5=-2\)

g) Ta có: \(\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\)

\(=\left(\sqrt{3}-1\right)\cdot\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\cdot\left|\sqrt{3}+1\right|\)

\(=\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1>0\))

\(=3-1=2\)


Các câu hỏi tương tự
sara
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
yến phạm
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Đỗ Hoàng Thanh Nga
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
nguyen thao
Xem chi tiết
ahn heeyeon
Xem chi tiết
nguyen ngoc son
Xem chi tiết