* rút gọn biểu thức:
a, \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{15}}\)
b, \(\left(\frac{1}{\sqrt{5}-\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{3}}\right).\sqrt{5}\)
c, \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
d, \(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)
e, \(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\frac{1}{3}}\)
a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)
= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)
= \(\sqrt{15}.0\)
= 0
b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)
= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)
= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)
= \(\sqrt{5}.\sqrt{5}\)
= 5
c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)
= \(\sqrt{5}+\sqrt{3}\)
d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)
= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)
= \(2\sqrt{5}.4\)
= \(8\sqrt{5}\)
e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)
= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)
= \(\sqrt{3}.\frac{20}{3}\)
= \(\frac{20\sqrt{3}}{3}\)
a, 320+160−2115
b, (15−3+15+3).5
c, (53+35):15
d, (2+5)2−(2+5)2
e, 1348+375−27−10113