a/ \(\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)^2}}=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b/ \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4+\sqrt{15}\right)=2\left(16-15\right)\)
\(M=\sqrt{\frac{\left(3\sqrt{3}-4\right)\left(2\sqrt{3}-1\right)}{\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)}}+\sqrt{\frac{\left(\sqrt{3}+4\right)\left(5+2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}}\)
\(M=\sqrt{\frac{18-3\sqrt{3}-8\sqrt{3}+4}{11}}+\sqrt{\frac{5\sqrt{3}+6+20+8\sqrt{3}}{13}}\)
\(M=\sqrt{\frac{11\left(2-\sqrt{3}\right)}{11}}+\sqrt{\frac{13\left(2+\sqrt{3}\right)}{13}}=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(M=\frac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)
\(M=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(M=\frac{1}{\sqrt{2}}\left(\sqrt{3}-1+\sqrt{3}+1\right)=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)