Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Phương
Xem chi tiết
Trung Luyện Viết
Xem chi tiết
Phương An
29 tháng 11 2016 lúc 21:36

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

Xem chi tiết
Member lỗi thời :>>...
11 tháng 10 2021 lúc 21:50

a) Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)

\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}5z-6y=0\\6x-4z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5z=6y\\6x=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{y}{5}=\frac{z}{6}\\\frac{z}{6}=\frac{x}{4}\end{cases}}}\)

\(\Leftrightarrow\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)

\(\Rightarrow\hept{\begin{cases}x=3.4=12\\y=3.5=15\\z=3.6=18\end{cases}}\)

Khách vãng lai đã xóa

thần đồng của năm đây rồi

Khách vãng lai đã xóa
lường tuấn anh
12 tháng 3 2023 lúc 19:36

gioi vay

Hồ Nhật Anh
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
GoKu Đại Chiến Super Man
17 tháng 2 2017 lúc 20:30

k mình mình giải chi tiết cho

Lộc Nguyễn Phúc
17 tháng 2 2017 lúc 20:31

có ai giải dc ko

alibaba nguyễn
18 tháng 2 2017 lúc 8:43

Giải được nhưng mà lâu quá rồi giải làm gì nữa

Ngọc Quỳnh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:50

a)      

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{2}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

\(y = \cot x\)

\(\sqrt 3 \)

1

0

-1

\( - \sqrt 3 \)

b)     Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) (Hình 31)

c)     Làm tương tự như trên đối với các khoảng \(\left( {\pi ;2\pi } \right),\left( { - \pi ;0} \right),\left( { - 2\pi ; - \pi } \right),....\)ta có đồ thị hàm số \(y = \cot x\)trên E được biểu diễn ở Hình 32.

 

Nguyễn Phan Thục Trinh
Xem chi tiết
Minh Nguyen
3 tháng 3 2020 lúc 21:55

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)

Khách vãng lai đã xóa
Đoàn Như Quỳnh
Xem chi tiết
Nguyễn Thị Hồng Điệp
21 tháng 4 2017 lúc 20:13

a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)

=> Có hai trường hợp

TH1: \(\frac{1}{4}+x=\frac{5}{6}\)                                                 TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)

<=> \(x=\frac{5}{6}-\frac{1}{4}\)                                                <=> \(x=-\frac{5}{6}-\frac{1}{4}\)

<=> \(x=\frac{10}{12}-\frac{3}{12}\)                                            <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)

<=> \(x=\frac{7}{12}\)                                                        <=> \(x=-1\frac{1}{12}\)

Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)

b) \(A\left(x\right)=5x^2-3x-16\)

Thay \(x=-2\) vào đa thức A(x), ta có:

\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)

\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)

\(A\left(-2\right)=20+6-16\)

\(A\left(-2\right)=10\)

Vậy giá trị của đa thức A(x) tại x =-2 là 10

c) \(A=4x^2y^2\left(-2x^3y^2\right)\)

\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)

\(A=\left(-8\right)x^5y^4\)

Đơn thức A có:

- Hệ số là: -8

- Phần biến là: \(x^5y^4\)

- Bậc là: 9

Hồng Tân Minh
21 tháng 4 2017 lúc 19:57

a)

1/4+x=5/6 hoặc -5/6

1/4+x=5/6 suy ra x=7/12

1/4+x=-5/6 suy ra x=-13/12

b) thay x=-2 vào

suy ra A=5.(-2)2-3.(-2)-16

=10

c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9

Bài dễ sao ko động não tí đi

๖Fly༉Donutღღ
21 tháng 4 2017 lúc 20:33

Câu 1: |1/4+x|=5/6

TH1: 1/4+x=5/6

               x=5/6-1/4=7/12

TH2: 1/4+x=-5/6

              x=-5/6-1/4=-13/12

Vậy x=7/12 hoặc x=-13/12

b) thay x=-2 ta có:

A=5.(-2)^2-3.(-2)-16

A=5.4-3.(-2)-16

A=20+6-16=10

c) A=4x^2y^2(-2x^3y^2)

    A= (-2.4).(x^2x^3) (y^2y^2)=-8x^5y^4

Đơn thức A có hệ số là -8

  phần biến là: x^5y^4

  có bậc là:9

Bài này quá dễ