\(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
Tính: a. \(\left(3\sqrt{2}+\sqrt{6}\right)\cdot\left(6-3\sqrt{3}\right)\)
b. \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c. \(\left(3-\sqrt{5}\right)\cdot\left(10-\sqrt{2}\right)\cdot\sqrt{3+\sqrt{5}}\)
\(\left(3\sqrt{2}+\sqrt{6}\right)\left(6-3\sqrt{3}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+1\right)\times3\left(2-\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(4-2\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)^2\)
\(=\dfrac{3\sqrt{6}}{2}\left(3-1\right)\left(\sqrt{3}-1\right)\)
\(=3\sqrt{6}\left(\sqrt{3}-1\right)\)
https://hoc24.vn/hoi-dap/question/405366.html
\(\sqrt{4-\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
= 5 - 3
= 2
\(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
Ta có: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{2}.\sqrt{4+\sqrt{15}}\right).\left(\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}.\left(16-15\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\sqrt{5}+2\sqrt{5}.\sqrt{3}+\sqrt{3}}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=5-3=2\)
Học tốt nha ^_^
Rút gọn \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
bạn có thể phân tích 4 + căn 5 = căn ( 4 + căn 5) . căn ( 4 + căn 5)
và căn 10 - căn 6 = căn 2( căn 5 - căn 3)
Khi đó Biểu thức rút gọn trở thành
căn(4 - căn 15).căn(4+15) . căn (4 + căn 15) . căn 2(căn 5 - căn 3)
= căn (16 - 15) . căn (8 + 2.căn 15).(căn 5 - căn 3) = căn (3 + 2.căn 3. căn 5 + 5). (căn 5 - căn 3)
= căn [ (căn 3 + căn 5)^2 ] . (căn 5 - căn 3) = (căn 5 + căn 3)(căn 5 - căn 3) = 5 - 3 = 2
BT: Tính
a, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
b,\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
c,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
Thực hiện các phép tính sau:
a, \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{\sqrt{3}+2}\)
b, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c, \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
d, \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
Rút gọn
A=\(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+\sqrt{2\sqrt{5}}}}\)
\(A=\sqrt{2}\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\sqrt{4+\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right).\left(16-15\right)\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{3}+\sqrt{5}\right).\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
\(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
Mà \(B>0\) \(\Rightarrow B=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)
\(=5-\sqrt{15}+\sqrt{15}-3=2\)
(Nếu đúng thì click cho mình 1 cái nhe!)
mình không hiểu chỗ : \(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\)
1. Rút gọn \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
2. Tính \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
3.Tính \(C=\frac{\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(3+\sqrt{5}\right)}{\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
Bài 2:
Ta có: \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
\(=\frac{\sqrt{\sqrt{5}-1}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}-\left(\sqrt{2}-1\right)\)
\(=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}-\sqrt{2}+1\)
\(=\frac{4}{2\sqrt{2}}-\sqrt{2}+1\)
\(=\sqrt{2}-\sqrt{2}+1\)
=1
câu 1. đkxđ: \(x\ge\frac{1}{2}\)
\(A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
nếu \(\left|\sqrt{2x-1}-1\right|=\sqrt{2x-1}-1\) với \(\sqrt{2x-1}\ge1\Leftrightarrow x\ge1\)
thì \(A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1=2\)
=> A=\(\sqrt{2}\)
nếu \(\left|\sqrt{2x-1}-1\right|=1-\sqrt{2x-1}\) với \(\frac{1}{2}\le x< 1\)
thì \(A\sqrt{2}=\sqrt{2x-1}+1-1+\sqrt{2x-1}=2\sqrt{2x-1}\)
=> A= \(\sqrt{4x-2}\)
câu 3: C = \(\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)}{\left(\text{4+\sqrt{15}}\right)\left(\sqrt{10-\sqrt{6}}\right)\sqrt{4-\sqrt{15}}}\)
\(=\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}}{\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
=\(\frac{\sqrt{9-\left(\sqrt{5}\right)^2}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}}{\sqrt{16-\left(\sqrt{15}\right)^2}.\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{15}}}\)
\(=\frac{2\left(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)}{\sqrt{40+10\sqrt{15}}-\sqrt{24-6\sqrt{15}}}\)
\(=2.\frac{\left(\sqrt{5}+5\right)-\left(\sqrt{5}+1\right)}{\left(\sqrt{15}+5\right)-\left(\sqrt{15}+3\right)}\)
= 4