(x+1)^2(x+2)+(x-1)^2(x-2)=12
x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0
⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)
Vậy pt vô nghiệm
*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm
Ta có: \(x^2-4x+7=0\)
\(\Leftrightarrow x^2-4x+4+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3=0\)
mà \(\left(x-2\right)^2+3\ge3>0\forall x\)
nên \(x\in\varnothing\)(đpcm)
(x+1)^2.(x+2)+(x-1)^2.(x-2)=12
(x^2+5x)^2 -2(x^2+5x)=24
(x^2+x-2).(x^2+x-3)=12
Bài 3 Giải Phương Trình
a) 4x-2 = 1/x-1 - 5/x^2- x
b) -x^2+12x+4/x^2+3x-4 = 12/x+4 + 12/3x-3
c) 1/x-1 + 2/x^2-5 = 4/x^2+x+1
d) 1/2x^2+5-7 - 2/x-1 = 3/2x^2-5x-7
b: \(\Leftrightarrow\dfrac{-3x^2+36x+12}{3\left(x+4\right)\left(x-1\right)}=\dfrac{36\left(x-1\right)}{3\left(x+4\right)\left(x-1\right)}+\dfrac{12\left(x+4\right)}{3\left(x-1\right)\left(x+4\right)}\)
\(\Leftrightarrow-3x^2+36x+12=36x-36+12x+48\)
\(\Leftrightarrow-3x^2+36x+12-48x-12=0\)
\(\Leftrightarrow3x\left(x+4\right)=0\)
=>x=0(nhận) hoặc x=-4(loại)
Tìm x, biết 12 chia hết cho x và a < -2
A. x ∈ − 1 .
B. x ∈ − 3 ; − 4 ; − 6 ; − 12 .
C. x ∈ − 2 ; − 1 .
D. x ∈ − 2 ; − 1 ; 1 ; 2 ; 3 ; 46 ; 12 .
Đáp án là B vì 12: -3 = -4; 12: -4 = -3; 12: -6 = -2;12: -12 = -1 và đáp ứng điều kiện a< -2
Mọi người check xem đúng không:
<=>x(3x+2)+(x+1)^2 - (2x - 5)(2x+5)= -12
<=>3x^2 + 2x + (x+1)^2 - 2x^2 - 5^2= -12
<=>(3x^2 - 2x^2) + [ (x +1)^2 -5^2] + 2x = -12
<=>(3x - 2x)(3x + 2x)+ (x+1-5) (x+1+5) + 2x = -12
=> 3x - 2x = -12 ; 3x+2x = -12 ; x+1+5 = -12 ; x+1-5 = -12 hoặc 2x = -12
=> x = -12 ; 5x =-12 ; x+ 6 = -12 ; x -4 = -12 hoặc x = -12: 2
=> x= -12 ; x = -12:5; x = -12 :6; x = -12 + 4 hoặc x= -6
=> x= -12 x = -12/5; x = -2 ; x = -8 hoặc x = -6
đúng rồi nha bạn
asdfghjkl;';lkjnhbgvfcvbnm,./
Mọi người check xem đúng không:
<=>x(3x+2)+(x+1)^2 - (2x - 5)(2x+5)= -12
<=>3x^2 + 2x + (x+1)^2 - 2x^2 - 5^2= -12
<=>(3x^2 - 2x^2) + [ (x +1)^2 -5^2] + 2x = -12
<=>(3x - 2x)(3x + 2x)+ (x+1-5) (x+1+5) + 2x = -12
=> 3x - 2x = -12 ; 3x+2x = -12 ; x+1+5 = -12 ; x+1-5 = -12 hoặc 2x = -12
=> x = -12 ; 5x =-12 ; x+ 6 = -12 ; x -4 = -12 hoặc x = -12: 2
=> x= -12 ; x = -12:5; x = -12 :6; x = -12 + 4 hoặc x= -6
=> x= -12 x = -12/5; x = -2 ; x = -8 hoặc x = -6
bạn làm sai rồi !
\(\Leftrightarrow x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(\Leftrightarrow4x+26=-12\)
\(\Leftrightarrow4x=-38\)
\(\Leftrightarrow x=-\frac{19}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{19}{2}\right\}\)
Giải pt 1.√(x+√(x^2-1))+√√(x-√(x^2-1))=2
2,x+x/(√(x^2-1)=35:12
a) \(\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}\)
b) \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
a/ \(\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+4}\)
Vậy..
b/ \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)
\(=\dfrac{1}{x+1}-\dfrac{1}{x+5}\)
Vậy..
16/ 1/2.x+1/6.x(x-2)=3/4-2.x
19/ 5/12.x+3=1/3-7/12.x
20/ 1/2.x+5/2=7/2.x-3/4
Mọi người giúp mình với mình đang cần gấp!!!
Phân tích các đa thức sau thành nhân tử: A= ( x^2+x)^2 + 4x^2+ 4x -12 , B=(x^2+ x + 1) (x^2+x + 2) -12 , C=x(x+1)(x+2)(x+3) + 1. , D=(x-1)(x-3)(x-5)(x-7) - 20
\(B=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(\Leftrightarrow B=\left(x^2+x+\dfrac{3}{2}-\dfrac{1}{2}\right)\left(x^2+x+\dfrac{3}{2}+\dfrac{1}{2}\right)-12\)
\(\Leftrightarrow B=\left(x^2+x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}-12\)
\(\Leftrightarrow B=\left(x^2+x+\dfrac{3}{2}\right)^2-\dfrac{49}{4}\)
\(\Leftrightarrow B=\left(x^2+x+\dfrac{3}{2}-\dfrac{7}{2}\right)\left(x^2+x+\dfrac{3}{2}+\dfrac{7}{2}\right)\)
\(\Leftrightarrow B=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(C=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(\Leftrightarrow C=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1\)
\(\Leftrightarrow C=\left(x^2+3x\right)\left(x^2+x+2x+2\right)+1\)
\(\Leftrightarrow C=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(\Leftrightarrow C=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)+1\)
\(\Leftrightarrow C=\left(x^2+3x+1\right)^2-1+1\)
\(\Leftrightarrow C=\left(x^2+3x+1\right)^2\)
\(D=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(\Leftrightarrow D=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(\Leftrightarrow D=\left(x^2-x-7x+7\right)\left(x^2-3x-5x+15\right)-20\)
\(\Leftrightarrow D=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
\(\Leftrightarrow D=\left(x^2-8x+11-4\right)\left(x^2-8x+11+4\right)-20\)
\(\Leftrightarrow D=\left(x^2-8x+11\right)^2-16-20\)
\(\Leftrightarrow D=\left(x^2-8x+11\right)^2-36\)
\(\Leftrightarrow D=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)\)
\(\Leftrightarrow D=\left(x^2-8x+5\right)\left(x^2-8x+17\right)\)
:D