Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Chứng minh rằng A<1
bài 2:tính tổng đặc biệt:
\(E=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
Bài 3:chứng minh:
a,\(A=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}\)chứng minh rằng \(A⋮100\)
b,\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)chứng minh rằng \(A>\frac{4}{3}\)
hlep me!!!!
a) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}.\) Chứng minh rằng: A < 1
b) Cho B= \(2^1+2^2+2^3+...+2^{2016}\) Chứng minh rằng: B chia hết cho 21
1, cho a,b,c là các số thực dương chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(a+2c\right)}\)
2,cho x,y,z thỏa mãn x+y+z=5 và xy+yz+xz=8 chứng minh rằng \(1\le x\le\frac{7}{3}\)
3, cho a,b,c>0 chứng minh rằng\(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(b+c-a\right)^2}+\frac{c^2}{2c^2+\left(b+a-c\right)^2}\le1\)
4,cho a,b,c là các số thực bất kỳ chứng minh rằng \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\left(ab+bc+ac-1\right)^2\)
5, cho a,b,c > 1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)chứng minh rằng \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Bài 1 : Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{79}{80}\)
Chứng minh rằng A < \(\frac{1}{9}\)
Bài 4 : Chứng minh rằng: 1.3.5.7....19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\).chứng minh rằng A<3/4
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)
Hình như có gì đó sai sai :')
A+1/4=1/2+1/32+......+1/20112
A+1/4<1/2+1/2*3 +1/3*4 +....1/2010*2011
A+1/4<1-1/2011<1=3/4+1/4
A<1/4 (ĐPCM)
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A<0,1 hãy tổng quát bài toán
Chứng minh rổng quát, Nếu:
\(A=\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+...+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\) (a;b \(\in\) N*)
\(a^{2.k}.A=1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+...+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\)
\(a^{2.k}.A+A=\left(1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+..+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\right)-\left(\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+..+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\right)\)
\(A.\left(a^{2.k}+1\right)=1-\frac{1}{a^{2.\left(k+n+1\right)}}< 1\)
\(A< \frac{1}{a^{2.k}+1}\)
Áp dụng vào bài toán dễ thấy a = 3; k = 1
Như vậy, \(A< \frac{1}{3^{2.1}+1}=\frac{1}{3^2+1}=\frac{1}{9+1}=\frac{1}{10}=0,1\left(đpcm\right)\)
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A <0,1 hãy tổng quát bài toán
\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\)
\(\Rightarrow9A=1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{2012}}-\frac{1}{3^{2014}}\)
\(\Rightarrow10A=1-\frac{1}{3^{2016}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{2016}}}{10}\)
Vì 0,1 = \(\frac{1}{10}\) nên \(\frac{1-\frac{1}{3^{2016}}}{10}< \frac{1}{10}\) hay A < 0,1
Bài 1: Cho a, b cùng dấu. Chứng minh rằng: \(\left(\frac{a^2+b^2}{2}\right)^3\le\left(\frac{a^3+b^3}{2}\right)^2\)
Bài 2: Cho \(a^2+b^2\ne0\). Chứng minh rằng: \(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5}\)
Bài 3: Cho a, b > 0. Chứng minh rằng: \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\ge5\left(\frac{1}{a}+\frac{1}{b}\right)\)
Bài 4: Cho a, b>0. Chứng minh rằng: \(\frac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)