Cho tam giác ABC cân tại C có C= 40'. Tính góc còn lại của tam giác.
cho tam giác ABC cân tại A. Đường phân giác của góc B và C lần lượt cắt AC tại D và AB tại E. A) cmr: tam giác ADB = tam giác AEC B) cm: tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên C) Cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
Cho ai ko đọc đc câu hỏi thì:
a) cmr tam giác ABD = tam giác AEC
B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên
C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b:ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có
DE//BC
góc EBC=góc DCB
=>BEDC là hình thang cân
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
BEDC là hình thang cân
=>EB=DC
=>EB=ED=DC
c: góc EBC=góc DCB=(180-40)/2=70 độ
góc BED=góc EDC=180-70=110 độ
Cho tam giác ABC cân tại A. Tính số đo các góc còn lại của tam giác ABC nếu biết:
a) A ^ = 40 °
b) B ^ = 50 °
c) C ^ = 60 °
Bài 1: Cho tam giác ABC cân tại A. Tính số đo các góc còn lại của tam giác ABC nếu biết:
a) = 40°; b) = 50°; c) = 60°.
Lời giải:
a)
Theo định lý tổng 3 góc trong tam giác:
$\widehat{D}+\widehat{E}+\widehat{F}=180^0$
$\Rightarrow \widehat{E}+\widehat{F}=180^0-\widehat{D}=180^0-60^0=120^0$
Mà tam giác $DEF$ cân tại $D$ nên $\widehat{E}=\widehat{F}$
Do đó:
$\widehat{E}=\widehat{F}=\frac{120^0}{2}=60^0$
b)
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)
$BM=CM$ (do $M là trung điểm $BC$)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)
cho tam giác ABC cân tại A,có góc A bằng 50 độ BM và CN là hai đường trung tuyến cắt nhau tại G
a)Tính các góc còn lại của tam giác ABC
b)C/m tam giác AMB=tam giác ANC
c)C/m tam giác AMB=tam giác ANC
a: góc ABC=góc ACB=(180-50)/2=65 độ
b: Xét ΔAMB và ΔANC có
AM=AN
góc BAM chung
AB=AC
=>ΔAMB=ΔANC
Cho tam giác ABC cân tại A. Tính số đo các góc còn lại của tam giác ABC, nếu biết:
a, Góc A bằng 40 độ.
b, Góc B = 50 độ.
c, Góc C bằng 60 độ.
Answer:
a,
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà đề ra: \(\widehat{A}=40^o\)
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)
\(\Rightarrow40^o+\widehat{B}+\widehat{B}=180^o\)
\(\widehat{2B}=140^o\)
\(\widehat{B}=70^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=70^o\)
b,
Theo đề ra: Tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+100^o=180^o\)
\(\Rightarrow\widehat{A}=80^o\)
c,
Theo đề ra: Tam giác ABC cân tại A
\(\Rightarrow\widehat{C}=\widehat{B}=60^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+120^o=180^o\)
\(\Rightarrow\widehat{A}=60^o\)
,Cho tam giác ABC có góc A=góc C+90 độ .Từ C kẻ đường thẳng vuông góc vs cạnh BC cắt tia BA tại E.
a)Giả sử góc B=30 độ,tính góc còn lại của tam giác ABC
b)C/m tam giác ACE cân
b: \(\widehat{ACE}+\widehat{ACB}=90^0\)
mà \(\widehat{CAE}=180^0-90^0-\widehat{C}=90^0-\widehat{ACB}\)
nên \(\widehat{CAE}=\widehat{ACE}\)
hay ΔAEC cân tại E
a: \(\widehat{A}+\widehat{C}=180^0-30^0=150^0\)
\(\Leftrightarrow2\cdot\widehat{C}+90^0=150^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
\(\Leftrightarrow\widehat{A}=120^0\)
cân tại A => goc C = goc B = 38 độ
góc A = 180 - goc C - góc B = 180 - 38 - 38 = 104 độ
Chúc ban hoc tot!
a> ta có : góc E = góc F = 400 ( vì tam giác DEF cân tại D)
Tam giác DEF có : góc D+ góc E + góc F = 1800
góc D + 400 +400 = 1800
\(\Rightarrow\)góc D = 1800 - 400-400= 1000
b> Xét tam giác DEM và tam giác DFM có:
AM : cạnh chung
EDM = FDM( vì DM là phân giác của góc D)
DE=DF ( vì tam giác DEF cân tại D)
Do đó : tam giác DEM = tam giác DFM ( c.g.c)
a) Xét tam giác DEF cân tại D có:
∠E=∠F= 40°(Tính chất của tam giác cân)
Ta có : ∠D+∠E+∠F=180°( Tổng 3 góc của 1 tam giác)
=>∠A+40°+40°=180°
∠A=180°-(40°+40°)
=> ∠A =100°
b)
GT: ΔDEF cân tại D
DM là tia phân giác góc D
KL: ΔDEM=ΔDFM
Chứng minh:
Xét ΔDEM và ΔDFM có:
DM (cạnh chung)
∠D1=∠D2
DE=DF (ΔDEF cân )
=>ΔDEM = ΔDFM (c.g.c)