Cho:
A=1/1^2+1/2^2+1/3^2+1/4^2+....+1/50^2
Chứng minh A>2
M=1/2^2+1/3^2+1/4^2+...+1/2021^2
chứng minh rằng:1/3<M<1
`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`
+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)
Giải:
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}< \dfrac{1}{2020.2021}\)
\(\Rightarrow M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}\)
\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2021}< 1\)
\(\Rightarrow M< 1\left(1\right)\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
...
\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)
\(\Rightarrow M>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}\)
\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}=\dfrac{1}{3}+\dfrac{56}{337}>\dfrac{1}{3}\left(2\right)\)
Vậy \(\dfrac{1}{3}< M< 1\) (đpcm)
Chúc bạn học tốt!
cho 4 số dương thoả mãn a,b,c,d:a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
cho 4 số dương thoả mãn a,b,c,d,biết a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
Cho biết
\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)=2
\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=2
Chứng minh a+b+c=abc
Ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1a^2+1b^2+1c^2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(=2^2=2=2+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
\(=\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{abc}=\dfrac{abc}{abc}\)
\(=a+b+c\)
\(=abc\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\\ \Rightarrow\dfrac{a+b+c}{abc}=1\\ \Rightarrow a+b+c=abc\left(dpcm\right)\)
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
cho S = 1/5^2 + 1/7^2 + 1/9^2+...+1/103^2
Chứng minh rằng S < 5/32
giup minh voi:
Cho:a= -1+2-3+4-....+(-1) n. Chứng tỏ A17 + A33+A50=-1
ai chia buon voi toi voi nich o thu 9 cua tui bi khoa den ngay mai roi huhu
Tính nhanh
b) 98^2
chứng minh các biểu thức không phụ thuộc giá trị của biến
A) (x+3)^2 - (x-3)^2-12
B) (x-2)^2 - (x -3) (x-1)
b)\(98^2=\left(100-2\right)^2=10000-400+4=9604\)
Bài 2:
a) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2-12x\)
\(=x^2+6x+9-x^2+6x-9-12x\)
=0
b) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)
\(=x^2-4x+4-x^2+4x-3\)
=-1