X^4+4=0
81x^4+4=0
x^4+64=0
3x(x-3)_4x+12=0
x^3-5x=0
(3x-2)^2-(x+2)^2=0
x^2-9-4(x+3)=0
chứng minh rằng với mọi x ϵ R
x^2-8x+17>0
x^2+4x+5>0
x^2-x+1>0
-x^2-4x-5<0
-x^2-3x-4<0
-x^2+10x-27<0
ai giúp e với
tìm x :
3x ( x + 1 ) - 2x ( x + 2 ) = - 1 - x
4x ( x - 2019 ) - x + 2019 = 0
( x - 4 )^2 - 36 = 0
x^2 + 8x + 16 = 0
x ( x + 6 ) - 7x - 42 = 0
25x^2 - 9 = 0
\(a,PT\Leftrightarrow3x^2+3x-2x^2-4x=-1-x\Leftrightarrow x^2=-1\left(\text{vô nghiệm}\right)\)
Vậy: ...
\(b,PT\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: ...
\(c,PT\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: ...
\(d,PT\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy: ...
\(e,PT\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy: ...
\(f,PT\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\Leftrightarrow x=\pm\dfrac{3}{5}\)
Vậy: ...
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất một ẩn? A.2x-y<0 B.0x+5≥4 C.x^2-3x+2>x^2-6 D.3/x-4≤0
phương trình nào sau đây vô nghiệm:
x^2 - 4 =0
x^2+x+1=0
căn x =2
x-1=0
4)2x+1=64
5)4x+1+40=65
4) 2x+1 = 64 = 26
=> x + 1 = 6
x = 5
5) 4x+1 + 40 = 65
4x+1 + 1 = 65
4x+1 = 64 = 43
=> x + 1 =3
x=2
\(2^{x+1}=2^6\)
\(x+1=6=>x=5\)
\(4^{x+1}+4^0=65\)
\(=>4^{x+1}+1=65=>4^{x+1}=64=4^3\)
\(x+1=3=>x=2\)
2x+1 = 64
2x+1 = 26
=> x + 1 = 6
x = 5
4x+1 + 40 = 65
4x+1 + 1 = 65
4x+1 = 64
4x+1 = 43
=> x + 1 = 3
x = 2
tìm x
x6 +2x3+1=0
x(x-5)=4x-20
x4-2x2=8-4x2
(x3-x2)-4x2+8x-4=0
\(x^6+2x^3+1=0\)
\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)
\(\Leftrightarrow\left(x^3+1\right)^2=0\)
\(\Leftrightarrow x^3=\left(-1\right)^3\)
\(\Leftrightarrow x=-1\)
___________
\(x\left(x-5\right)=4x-20\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
_____________
\(x^4-2x^2=8-4x^2\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
_______________
\(\left(x^3-x^2\right)-4x^2+8x-4\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Chứng minh BĐT sau luôn đúng: x > 0
x + \(\dfrac{4}{x}\) \(\ge\) 4
Áp dụng BĐT Cô si ta có: x > 0 => x + \(\dfrac{4}{x}\) \(\ge\) 2 . \(\sqrt{\dfrac{4x}{x}}\)
<=> x + \(\dfrac{4}{x}\) \(\ge\) 4
Ta có: \(x+\dfrac{4}{x}\ge4\)
\(\Leftrightarrow\dfrac{x^2+4}{x}-\dfrac{4x}{x}\ge0\)
\(\Leftrightarrow x^2-4x+4\ge0\forall x\)
\(\Leftrightarrow\left(x-2\right)^2\ge0\forall x>0\)(luôn đúng)
`x+4/x>=4`
`<=>x-4+4/x>=0`
`<=>(sqrtx)^2-2.sqrtx. 2/sqrtx+(2/sqrtx)^2>=0(x>0)`
`<=>(sqrtx-2/sqrtx)^2>=0`(luôn đúng)
`=>` đpcm
Dấu "=" `<=>x=2`
Tìm x , biết :
a, x mũ 2 - 2x + 1 = 25
b, 4 x mũ 2 - ( x + 4 ) mũ 2 = 0
c, 9 - 64 x mũ 2 = 0
d, 9 ( 4 x + 3 ) mũ 2 = 16 ( 3 x - 5 ) mũ 2
a. x mũ 2 - 2x + 1 = 25
= x^2 + 2.x.1 + 1^2
= ( x + 1 ) ^2
ko bt có đúng ko nữa, mấy câu kia tui ko bt lm