Cho a>0
Chứng minh: 3a2+2/a3>=5
Cho phân thức B = − a 4 + a 3 + a − 1 a 4 + a 3 + 3 a 2 + 2 a + 2 .
a) Thu gọn B.
b) Chứng minh B luôn không âm với mọi giá trị của a.
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:591. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Chứng minh đẳng thức:
a) a 2 − 3 a a 2 + 9 − 6 a 2 27 − 9 a + 3 a 2 − a 3 . 1 − 2 a − 3 a 2 = a + 1 a với a ≠ 0 ; 3 ;
b) 2 5 b − 2 b + 1 . b + 1 5 b − 3 5 b − 3 5 : b − 1 b = 6 b 5 ( b − 1 ) với b ≠ 0 ; ± 1 .
Thực hiện phép tính đối với vế trái của mỗi đẳng thức.
cho x y thỏa mãn (x + y + 1)^2+ 5 (x + y) + 9 + y^2 = 0
chứng minh - 5<= x + y<=-2
giúp mình với ạa
cho a+b+c=0
Chứng minh \(a^4+b^4+c^4\)=2\(\left(ab+ac+bc\right)^2\)
Ta có: \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
Mặt khác: \(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Suy ra: \(2ab+2bc+2ac=0\)
\(\Rightarrow2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=0\Leftrightarrow2\left(ab+bc+ac\right)^2=0\) (1)
Lại có: \(a^4+b^4+c^4\)
\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]\)
\(=0-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2\left(ab+bc+ac\right)-2\left(ab+bc+ac\right)\right]\)
\(=-2\left(ab+bc+ac\right)^2-4\left(ab+bc+ac\right)\)
\(=0\) (2)
Từ (1) và (2) \(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2=0\)
hay \(a^4+b^4+c^4=2\left(ab+ac+bc\right)^2\)
Kiểm tra hộ mình xem có đúng không ạ!
bài 1: cho a,b,c thỏa mãn a+b+c=0
tính: (a+2b)2+(b+2c)2+(c+2a)2 / (a-2b)2+(b-2c)2+(c-2a)2
bài 2: cho số a,b,c có tổng khác 0 thỏa mãn: a3+b3+c3=3abc
tính: ab+2bc+3ca / 3a2+4b2+5c2
1.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Ta có:
\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)
\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)
\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)
b.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)
cho a và b lần lượt thỏa mãn các hệ thức sau
a3-3a2+5a-2020=0 và b3-3b2=5b=2014
tính a+b
Cho A = \(\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\) với x>0
chứng minh rằng: A ko thể nhận giá trị nguyên
Để A là số nguyên thì \(3\sqrt{x}+8⋮\sqrt{x}+2\)
=>\(3\sqrt{x}+6+2⋮\sqrt{x}+2\)
=>\(2⋮\sqrt{x}+2\)
mà \(\sqrt{x}+2>2\forall x>0\)
nên A không thể là số nguyên
Cho a2+b2 +c2 -ab-ac-bc=0
Chứng minh a=b=c
\(a^2+b^2+c^2-ab-ac-bc=0\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2ac-2bc=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)
Ta thấy: \(\left(a-b\right)^2\ge0\forall a;b\)
\(\left(b-c\right)^2\ge0\forall b;c\)
\(\left(a-c\right)^2\ge0\forall a;c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a;b;c\)
Mặt khác: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\left(dpcm\right)\)
#\(Toru\)