Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Nguyễn
Xem chi tiết
Nguyễn Lê Hà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 20:58

a: =(x^2y-x^3)-(9y-9x)

=x^2(y-x)-9(y-x)

=(y-x)(x^2-9)

=(y-x)(x-3)(x+3)

b: \(=\left(x^2-2xy+y^2\right)-4\)

=(x-y)^2-4

=(x-y-2)(x-y+2)

c: \(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

=(x+2+y)(x+2-y)

d: =(x^2-y^2)-(2x+2y)

=(x-y)(x+y)-2(x+y)

=(x+y)(x-y-2)

Toru
29 tháng 8 2023 lúc 21:00

\(a,x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(y-x\right)\left(x^2-9\right)\)

\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)

\(b,x^2-2xy+y^2-4\)

\(=\left(x^2-2xy+y^2\right)-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

\(c,x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

\(=\left(x-y+2\right)\left(x+y+2\right)\)

\(d,x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

#Urushi

hoàng nguyễn anh thảo
Xem chi tiết
Vũ Chấn Hưng
Xem chi tiết
lipphangphangxi nguyen k...
26 tháng 4 2016 lúc 20:20

đề sai

Doraemon
Xem chi tiết
Dương Lam Hàng
26 tháng 6 2018 lúc 14:42

C1: \(\left(x+y\right)\left(x-y\right)=x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)

C2: x2-y2=(x-y)(x+y)

  <=> x2-y2-(x-y)(x+y)=0

   <=> x2-y2-[x(x+y)-y(x+y)] = 0

   <=> x2-y2-(x2+xy-xy-y2) = 0

    <=> x2-y2-(x2-y2) = 0

    <=> x2-y2-x2+y2 = 0

    <=> 0 =0 (đúng)

Vậy .....

Never_NNL
26 tháng 6 2018 lúc 14:36

x^2 - y^2 = ( x + y )( x - y )

Co ( x + y )( x - y ) = x^2 - xy + xy - y^2 = x^2 - y^2

Ma x^2 - y^2 = x^2 - y^2

=> x^2 - y^2 = ( x + y )( x - y ) 

Duoc Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
9 tháng 8 2017 lúc 12:54

Ói , hoa mắt chóng mặt nhức đầu ,

Xem chi tiết
pham trung thanh
8 tháng 12 2017 lúc 19:18

Áp dụng BĐT Cauchy-Schwaz: 

\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\)        \(\left(1\right)\)

 Áp dụng BĐT AM-GM:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge x+y\)           

Do đó: Áp dụng BĐT AM-GM ngược dấu: 

   \(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)

\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)   (đpcm)

Dấu "=" xảy ra khi x=y=1

Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)

Bée Changg
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:33

a.

\(x^2+4y^2+4xy=0\)

\(\Leftrightarrow\left(x+2y\right)^2=0\)

\(\Leftrightarrow x+2y=0\)

\(\Leftrightarrow x=-2y\)

Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)

b.

\(2y^4-9y^3+2y^2-9y=0\)

\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)

\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)

c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được

XLND A
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 18:21

\(a,=2\left(xy^2-2\right)\\ b,=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x-y+1\right)\left(x+y\right)\\ c,=y\left(x^2-6x-9\right)\\ d,=x^2+3x+x+3=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)