Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ninh
Xem chi tiết
Yến linh
Xem chi tiết
Yến linh
13 tháng 9 2021 lúc 12:56

giúp mik vs gấp lắm:<<

Ha Linh Trân
Xem chi tiết
tthnew
11 tháng 8 2019 lúc 16:53

Ta có: \(E=2x^2+2x\left(y+3\right)+2y^2+2020\)

\(=2\left(x^2+2.x.\frac{\left(y+3\right)}{2}+\frac{\left(y+3\right)^2}{4}\right)+2y^2+2020-\frac{\left(y+3\right)^2}{2}\)

\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3y^2-6y+4031}{2}\)

\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3\left(y-1\right)^2+4028}{2}\ge\frac{4028}{2}=2014\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\frac{y+3}{2}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Vậy...

DTD2006ok
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 23:06

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

Alex Arrmanto Ngọc
Xem chi tiết
Thu Thao
16 tháng 1 2021 lúc 10:17

\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)

\(=\left(y+x+1\right)^2+x^2-4x+1\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)

=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 

Lan Ngọc
Xem chi tiết
Nguyễn Việt Hoàng
11 tháng 8 2020 lúc 12:54

\(M=x^2-8x+5\)

\(\Leftrightarrow M=x^2-8x+16-11\)

\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)

Min M = -11 

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
11 tháng 8 2020 lúc 12:57

\(N=-3x-6x-9\)

\(\Leftrightarrow N=-9x-9\le-9\)

Max N = -9

\(\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Xyz OLM
11 tháng 8 2020 lúc 12:58

a) Ta có : M = x2 - 8x + 5 = x2 - 8x + 16 - 17 = (x - 4)2 - 17 \(\ge\)-17

Dấu "=" xảy ra <=> x - 4 = 0 => x = 4

Khách vãng lai đã xóa
phi thảo lan
Xem chi tiết
Nguyễn Văn Khang
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 15:40

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

ILoveMath
16 tháng 11 2021 lúc 15:41

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Tú Bùi Anh
Xem chi tiết