Cho △ABC nhọn (AB < AC). Dựng AM là đường trung tuyến của tam giác ABC.
a) Chứng minh SABM = SACM
b) Chứng minh SABC = 2 SABM
Cho △ABC nhọn (AB < AC). Dựng AM là đường trung tuyến của tam giác ABC.
a) Chứng minh SABM = SACM
b) Chứng minh SABC = 2 SABM
a) Kẻ đường cao AH
Ta có: \(S_{ABM}=\dfrac{1}{2}.AH.BM;S_{ACM}=\dfrac{1}{2}.AH.CM\)
Mà BM = CM (do M là trung điểm của BC )
\(\Rightarrow S_{ABM}=S_{ACM}\)
b) Ta có: \(S_{ABC}=S_{ABM}+S_{ACM}=S_{ABM}+S_{ABM}=2S_{ABM}\)
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
Cho tam giác ABC vuông có AB= 6cm, AC= 8cm. Đường phân giác của góc A cắt cạnh BC tại D. Goih M, N theo thứ tự là hình chiêu của B và C trên đường thẳng AD
a, Chứng minh tam giác ABM= Tam giác ACN
b, Tính SABM/SACM
c, Chứng minh AM/AN=DM/DN
Cho tam giác ABC có AM là trung tuyến. CMR: SABM=SACM.
Kẻ đường cao AH
\(S_{ABM}=\dfrac{AH\cdot BM}{2}\)
\(S_{ACM}=\dfrac{AH\cdot CM}{2}\)
mà BM=CM
nên \(S_{ABM}=S_{ACM}\)
Cho tam giác ABC, M trên cạnh BC. Chứng minh Sabm/Sacm = BM/CM.
Cho ∆ABC vuông tại A. Dựng đường trung tuyến AM của ∆ABC.a) Biết AB = 3 và AC = 4. Tính AM?b) Chứng minh 𝑀𝐴𝐶 ̂ = 𝑀𝐶𝐴 ̂.c) Chứng minh ∆𝐴𝐵𝑀 cân.
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Vì AM là tt ứng với ch BC nên \(AM=\dfrac{1}{2}BC=2,5\left(cm\right)\)
b, Vì AM là tt ứng vs ch BC nên \(AM=MB=MC\)
Do đó tg AMC cân tại M nên \(\widehat{MAC}=\widehat{MCA}\)
c, Ta có \(AM=MB\left(cmt\right)\) nên tg ABM cân tại M
Bài 17. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm, AM là trung tuyến của tam giác ABC.
a. Tính BC,AM =?.
b. Kẻ MD vuông góc với AB, ME vuông góc với AC. Chứng minh tứ giác AEMD là hình chữ nhật.
c. Chứng minh D là trung điểm của AB, E là trung điểm của AC.
d. Tứ giác DECB là hình gi? Vì sao?
e. Tìm điều kiện của tam giác ABC để AEMD là hình vuông.
f. Khi M di chuyển trên cạnh BC thì trung điểm I của AM di chuyển trên đường nào?
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh △AMB = △AMC và AM là tia phân giác của góc A.
b) Chứng minh AM BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì ? Vì sao ?
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: BM=CM=3cm
=>AM=4cm
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
HELP ME
a. Xét tam giác AMB và tam giác AMC:
AB = AC
AM chung
BM = CM (trung tuyến AM hạ từ A đến BC)
=> tam giác AMB = tam giác AMC
=> góc BAM = góc CAM (2 góc tương ứng)=>AM là tia phân giác của góc BACb. đề bài bị thiếuc. ta có BM = CM(cma) => BM = CM = \(\dfrac{BC}{2}\)= \(\dfrac{6}{2}\)= 3(cm) Áp dụng định lí Pi-ta-go vào tam giác ABM: AB2 = BM2 + AM2=> AM2 = AB2 - BM2 AM2 = 52 - 32 = 25 - 9 = 16(cm)=> AM = 4 cmCho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM