Cho pt : x2 - mx + m - 3 = 0 . CMR pt luôn có 2 nghiệm phân biệt với mọi m
Cho pt x2+2(m-2)+m2-4m= 0
a) CM pt luôn có 2 nghiệm phân biệt với mọi m
b) tìm m để pt có 2 nghiệm phân biệt thỏa x1, x2 thỏa mãn 3/x1+ x2 = 3/x2+x1
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
`mx^2 -2(m+1)x+1-3m=0`
1. CMR: PT đã cho luôn có nghiệm với mọi m
2. Với x khác 0, `x_1 ;x_2` là 2 nghiệm phân biệt của PT. Tìm min \(x_1^2+x_2^2\)
1:Phương trình luôn có nghiệm với mọi m<>0
Sửa đề: Chứng minh
TH1: m=0
Phương trình sẽ trở thành \(0x^2-2\left(0+1\right)x+1-3\cdot0=0\)
=>1=0(vô lý)
TH2: m<>0
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot m\cdot\left(1-3m\right)\)
\(=4\left(m+1\right)^2-4m+12m^2\)
\(=4m^2+8m+4-4m+12m^2\)
\(=16m^2+4m+4\)
\(=16\left(m^2+\dfrac{1}{4}m+\dfrac{1}{4}\right)\)
\(=16\left(m^2+2\cdot m\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{15}{64}\right)\)
\(=16\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall m\)
=>Phương trình luôn có nghiệm với mọi m<>0
2: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{m}=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(\dfrac{2m+2}{m}\right)^2-2\cdot\dfrac{1-3m}{m}\)
\(=\dfrac{4m^2+8m+4}{m^2}+\dfrac{6m-2}{m}\)
\(=\dfrac{4m^2+8m+4+6m^2-2m}{m^2}\)
\(=\dfrac{10m^2+6m+4}{m^2}\)
\(=10+\dfrac{6}{m}+\dfrac{4}{m^2}\)
\(=\left(\dfrac{2}{m}\right)^2+2\cdot\dfrac{2}{m}\cdot1,5+2,25+7,75\)
\(=\left(\dfrac{2}{m}+1,5\right)^2+7,75>=7,75\forall m\ne0\)
Dấu '=' xảy ra khi \(\dfrac{2}{m}+1,5=0\)
=>\(\dfrac{2}{m}=-1,5\)
=>\(m=-\dfrac{2}{1,5}=-\dfrac{4}{3}\)
Với \(m=0\) pt có nghiệm
Với \(m\ne0\)
\(\Delta'=\left(m+1\right)^2-m\left(1-3m\right)=4m^2+m+1=\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{16}>0;\forall m\)
Pt luôn có nghiệm với mọi m
b. Câu này chắc đề đúng là "với m khác 0"
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m}\\x_1x_2=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\dfrac{4\left(m+1\right)^2}{m^2}-\dfrac{2\left(1-3m\right)}{m}\)
\(=\dfrac{10m^2+6m+4}{m^2}=\dfrac{4}{m^2}+\dfrac{6}{m}+10\)
\(=4\left(\dfrac{1}{m}+\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Dấu "=" xảy ra khi \(m=-\dfrac{4}{3}\)
Cho pt: x2 - (2m+1)x+m=0 (m là tham số)
a) CMR: pt luôn có 2 nghiệm phân biệt với mọi m.
b) Tìm m để A= x12 - x1 + 2mx2+x1x2 đạt GTNN.
a/ \(x^2-\left(2m+1\right)x+m=0\)
\(\Delta=[-\left(2m+1\right)]^2-4m=4m^2+4m+1-4m=4m^2+1\)
vi 1>0
4m2≥0(với mọi m)
Nên 4m2+1>0(với mọi m)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b)Theo định lí viet \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt
\(\Rightarrow x_1^2-\left(2m+1\right)x_1+m=0\) \(\Leftrightarrow x_1^2-x_1=2mx_1-m\)
\(A=x_1^2-x_1+2mx_2+x_1x_2\)
\(=2mx_1-m+2mx_2+x_1x_2\)\(=2m\left(x_1+x_2\right)-m+x_1x_2\)\(=2m\left(2m+1\right)-m+m\)\(=4\left(m+\dfrac{1}{4}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)
Dấu = xra khi \(m=-\dfrac{1}{4}\)
Vậy minA=\(-\dfrac{1}{4}\)khi \(m=-\dfrac{1}{4}\)
cách làm nào sai
cho pt x^2-mx+m-1=0 tìm m để pt có 2 nghiệm phân biệt
c1: có a+b+c =1-m+m-1=0 nên pt luôn có 2 nghiệm phân biệt vói mọi m
c2: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0 <=> m>2 kl...
c3: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0( luôn đúng với mọi m) kl...
giải thích vì sao
m khác 2 nha bn
Học tốt
Cho PT: x^2-2(m+1)x+2m-2=0 (x là ẩn số)a) CMR: PT luôn có 2 nghiệm phân biệt với mọi mb) Gọi 2 nghiệm của PT là x1, x2. Tính theo m giá trị của biểu thức:E=x1^2+2(m+1)x2+2m-2
Giúp mk câu b nha
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
Cho phương trình: x2 - 2(m - 1)x - 3 = 0 (1)
CMR pt (1) luôn có 2 nghiệm phân biệt x1, x2 với mọi giá trị m. Tìm m thoả mãn:
\(\dfrac{x_1}{x^2_2}+\dfrac{x_2}{x^2_1}=m-1\)
\(ac=-3< 0\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)
\(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\Leftrightarrow\dfrac{x_1^3+x_2^3}{\left(x_1x_2\right)^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{9}=m-1\)
\(\Leftrightarrow8\left(m-1\right)^3+18\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\8\left(m-1\right)^2+9=0\left(vô-nghiệm\right)\end{matrix}\right.\)
Cho pt x^2 -mx +m-2
a)CMR pt luôn có 2 nghiệm phân biệt
b)Tìm m để pt có 2 nghiệm x1,x2 thỏa mãn x1^-2/x1-1 . x2^2-2/x2-1=4
Cho pt x2 + 2(m+1)x - 2m4 + m2 = 0 (m là tham số)
a) Giải pt khi m = 1
b) Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi m
a)
Thế m = 1 vào PT được: \(x^2+2\left(1+1\right)x-2.1^4+1^2=0\)
<=> \(x^2+4x-1=0\)
\(\Delta=16+4=20\)
\(\left\{{}\begin{matrix}x_1=-2+\sqrt{5}\\x_2=-2-\sqrt{5}\end{matrix}\right.\)
b) đề đúng chưa=)
cho phương trình x^2-mx-x-m-3 =0
cmr pt luôn có 2 nghiệm phân biệt
x2 -mx-x-m-3=0
=> x2 -x(m+1) -m-3=0
=> đenta: [-(m-1)]2 -4(-m-3)
=> m2 - 2m+1 +4m+12
=> m2 +2m+1+12
=> ( m+1)2 +12 > 0
mà (m+1)^2 > 0; 12>0 nên...