Tìm nghiệm:
a) 2x^3 - 12x^2 + 17x
b) x^3 +x ^2 + 4
Bài 2: Chứng to rằng các đa thức sau vô nghiệm:
a) f(x) = x +x+1
b) g(x) = x - x+1
c) mx)=(x-1)² +(x-2)
d) e(x) = |x-1+|x-2|
Bài 4: Tìm nghiệm của đa thức sau:
a) f(x)= x -2x-4
b) g(x) = x² + x +4
c) mx) = 8x - 12x +6x-2
d) n(x)= x+3x +3x+2
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
b.
\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)
\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)
\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)
Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)
\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)
Phương trình có nghiệm khi và chỉ khi:
\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)
Lý thuyết đồ thị:
Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)
Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)
a.
\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)
\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:
\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)
c.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\left(m-1\right)sin2x-\left(m+1\right)\left(\dfrac{1}{2}+\dfrac{1}{2}cos2x\right)=m\)
\(\Leftrightarrow\left(2m-2\right)sin2x-\left(m+2\right)cos2x=3m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi:
\(\left(2m-2\right)^2+\left(m+2\right)^2\ge9m^2\)
\(\Leftrightarrow m^2+m-2\le0\)
\(\Leftrightarrow-2\le m\le\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(^{ }\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
a) \(\sqrt{3}\left(\dfrac{1+cos2x}{2}\right)+\dfrac{1}{2}sin2x=m\) ↔ \(\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=m-\dfrac{\sqrt{3}}{2}\)
→\(\sqrt{3}cos2x+sin2x=2m-\sqrt{3}\) ↔ \(2cos\left(\dfrac{\pi}{6}-2x\right)=2m-\sqrt{3}\)
→\(cos\left(\dfrac{\pi}{6}-2x\right)=m-\dfrac{\sqrt{3}}{2}\)
Pt có nghiệm khi và chỉ khi \(-1\le m-\dfrac{\sqrt{3}}{2}\le1\)
b) \(\left(3+m\right)sin^2x-2sinx.cosx+mcos^2x=0\)
cosx=0→ sinx=0=> vô lý
→ sinx#0 chia cả 2 vế của pt cho cos2x ta đc:
\(\left(3+m\right)tan^2x-2tanx+m=0\)
pt có nghiệm ⇔ △' ≥0
Tự giải phần sau
c) \(\left(1-m\right)sin^2x+2\left(m-1\right)sinx.cosx-\left(2m+1\right)cos^2x=0\)
⇔cosx=0→sinx=0→ vô lý
⇒ cosx#0 chia cả 2 vế pt cho cos2x
\(\left(1-m\right)tan^2x+2\left(m-1\right)tanx-\left(2m+1\right)=0\)
pt có nghiệm khi và chỉ khi △' ≥ 0
Tự giải
Tìm x biết
x^3 + 6x^2 +12x= 19
5(x + 9)^2(x - 4)^3 - 10(x + 9)^3(x - 4)^2 = 0
(2x + 3)^2 + (x - 2)^2 - 2(2x +3 )(x - 2)
`Answer:`
a. \(x^3+6x^2+12=19\)
\(\Leftrightarrow x^3+6x^2+12x-19=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)
Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)
\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)
\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)
\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)
c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(2x+3-x+2\right)^2\)
\(=\left(x+5\right)^2\)
bất phương trình 5x-1>2x+3 có nghiệm:
A. x>\(\dfrac{3}{4}\) B. x>1 C. x>\(\dfrac{4}{3}\) D. ∀x∈R
giải chi tiết cho mik nha
\(5x-1>2x+3\)
\(\Leftrightarrow5x-2x>3+1\)
\(\Leftrightarrow3x>4\)
\(\Leftrightarrow x>\dfrac{4}{3}\)
--> Chọn C
\(5x-1>2x+3\Leftrightarrow5x-2x>3+1\Leftrightarrow3x>4\Leftrightarrow x>\dfrac{4}{3}\)
=> Đáp án C đúng
1.rút gọn bt A= (x+2)3-2x(x+3)+(x3-8):(x-2)
2. tìm x biết:
a. 3x2-12x=0
b.4x2-1-4(1-2x)=0
Tìm x biết rằng:
a) ( x 2 + 2x + 4)(2 - x) + x(x - 3)(x + 4) - x 2 + 24 = 0;
b) x 2 + 3 ( 5 − 6 x ) + ( 12 x − 2 ) x 4 + 3 = 0 .
tìm x
a) 2x-3=-x+6
b)|2x-7|+2=13
c) (-12x- 4 mũ 3).8 mũ 3= 4.8 mũ 4
a) 2x-3=-x+6
2x - 3 + x - 6 =0
3x -9 = 0
3x = 9
x = 9 : 3
x= 3
c/ \(\left(-12x-4^3\right).8^3=4.8^4\)
\(\left(-12x-64\right).512=16384\)
\(-12x-64=\dfrac{16384}{512}=32\)
\(-12x=32+64=96\)
\(x=\dfrac{96}{\left(-12\right)}=-8\)
a, 2x-3=-x+6
\(\Leftrightarrow\)2x-3+x-6=0
\(\Leftrightarrow\)3x-9=0
\(\Leftrightarrow\)3x=9
\(\Leftrightarrow\)x=3
a) Ta có: \(2x-3=-x+6\)
\(\Leftrightarrow2x+x=6+3\)
\(\Leftrightarrow3x=9\)
hay x=3
Vậy: x=3
b) Ta có: \(\left|2x-7\right|+2=13\)
\(\Leftrightarrow\left|2x-7\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=11\\2x-7=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=18\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{9;-2\right\}\)
c) Ta có: \(\left(-12x-4^3\right)\cdot8^3=4\cdot8^4\)
\(\Leftrightarrow\left(-12x-64\right)=\dfrac{4\cdot8^4}{8^3}=32\)
\(\Leftrightarrow-12x=96\)
hay x=-8
Vậy: x=-8
Tìm m để phương trình sau có nghiệm:
a. \(x^2+2x+m-5=0\)
b. \(x^2+2mx+m^2-2m+5=0\)
\(a,\Leftrightarrow\Delta'=1-\left(m-5\right)\ge0\\ \Leftrightarrow6-m\ge0\Leftrightarrow m\le6\\ b,\Leftrightarrow\Delta'=m^2-\left(m^2-2m+5\right)\ge0\\ \Leftrightarrow2m-5\ge0\Leftrightarrow m\ge\dfrac{5}{2}\)
a. x2 + 2x + m - 5 =0
b2 - 4ac = 2 bình - 4. 1 . (m - 5 ) = 0
4 - 4m + 20 = 0
-4m + 24 =0
suy ra m = - 6
câu cx y như vậy :))))
Tìm x
a, 3(x-1)^2-3x(x-5)=2
b, 4x^2-12x=-9
c, (2x-3)^2=(x+5)^2
d, (x^4-2x^3+4x^2-8x)÷(x^2+4)-2x=-4
e, x-2/2-x+3/3+x+4/5-x+5=0
\(a.3\left(x^2-2x+1\right)-3x^2+15x-2=0\)
\(3x^2-6x+3-3x^2+15x-2=0\)
\(9x+1=0\)
\(x=-\frac{1}{9}\)
\(b.4x^2-12x+9=0\)
\(4x^2-6x-6x+9=0\)
\(2x\left(x-3\right)-3\left(x-3\right)=0\)
\(\left(2x-3\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)
\(c.\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
a) 3(x - 1)2 - 3x(x - 5) = 2
=> 3(x2 - 2x + 1) - 3x2 + 15x = 2
=> 3x2 - 6x + 3 - 3x2 + 15x = 2
=> 9x = 2 - 3
=> 9x = -1
=> x = -1/9
b) 4x2 - 12x = -9
=> 4x2 - 12x + 9 = 0
=> (2x - 3)2 = 0
=> 2x - 3 = 0
=> 2x = 3
=> x = 3/2
c) (2x - 3)2 = (x + 5)2
=> (2x - 3)2 - (x + 5)2 = 0
=> (2x - 3 - x - 5)(2x - 3 + x + 5) = 0
=> (x - 8)(3x + 2) = 0
=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
d) \(\left(x^4-2x^3+4x^2-8x\right):\left(x^2+4\right)-2x=-4\)
=> \(\left[x^3\left(x-2\right)+4x\left(x-2\right)\right]:\left(x^2+4\right)-2x=-4\)
=> \(x\left(x-2\right)\left(x^2+4\right):\left(x^2+4\right)-2x=-4\)
=> \(x^2-2x-2x+4=0\)
=> \(\left(x-2\right)^2=0\)
=> x - 2 = 0
=> x = 2
e) khđ