Cho \(A=a-\sqrt{a}\). Biết a>1, hãy so sánh A với \(\left|A\right|\)
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút gọn biểu thức P
b) Biết a > 1. Hãy so sánh P với \(\left|P\right|\)
a)
ĐK: \(a>0\)
\(P=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\\ =\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\\ =a+\sqrt{a}-2\sqrt{a}-1+1\\ =a-\sqrt{a}\)
b)
\(a>1\Rightarrow\sqrt{a}-1>0\Rightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\)
\(\Rightarrow\left|P\right|=P\)
Cho biểu thức :
P=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a.Rút gọn P
b.Biết a > 1.Hãy so sánh P với \(\left|P\right|\)
c.Tìm giá trị nhỏ nhất của P
a) \(P=\dfrac{\sqrt{a}\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(P=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(P=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)
\(P=a+\sqrt{a}-2\sqrt{a}-1+1\)
\(P=a-\sqrt{a}\)
b) Với a > 1 thì \(a>\sqrt{a}\) , do đó \(P=a-\sqrt{a}>0\), suy ra \(\left|P\right|=P\)
c) \(A=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy A nhỏ nhất bằng \(-\dfrac{1}{4}\) khi cà chỉ khi \(\sqrt{a}=\dfrac{1}{2}\) hay \(a=\dfrac{1}{4}\)
a: \(P=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}\)
b: a>1 nên P>0
\(\Leftrightarrow P=\left|P\right|\)
Cho biểu thức:
A=\(\left(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{3x+\sqrt{x}}{\sqrt{x}}+2\right):\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{x-\sqrt{x}}\)
a) Rút gọn A
b) Với x>1 hãy so sánh |A| với A
c) Tìm x để A=5
d) tìm min của A
Cho biểu thức:
\(F=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
a) Rút gọn F
b) Tìm a để F nhỏ nhất
c) Tìm a để \(\sqrt{F}>F\)
d) So sánh F với \(\dfrac{1}{\sqrt{a}}\)
Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
a: Ta có: \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
\(=\dfrac{6\sqrt{a}-6+10-2\sqrt{a}}{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
\(=\dfrac{4\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\cdot\dfrac{1}{4\sqrt{a}}\)
\(=\dfrac{1}{\sqrt{a}}\)
a) \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{6\left(\sqrt{a}-1\right)+10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{4\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{1}{\sqrt{a}}\)
b) \(C=B.\left(a-\sqrt{a}+1\right)=\dfrac{a-\sqrt{a}+1}{\sqrt{a}}=\sqrt{a}-1+\dfrac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\dfrac{1}{\sqrt{a}}}-1=1\)(bất đẳng thức Cauchy cho 2 số dương)
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
Bài 1:
Q = \(\left(\dfrac{1}{\sqrt{a}+1}\right)\).\(\left(\dfrac{1}{a+\sqrt{a}}\right)\):\(\dfrac{\sqrt{a}-1}{a+2\sqrt{a+1}}\)
a, rút gọn
b, so sánh Q với 1
*) Q = \(\dfrac{1}{x-2\sqrt{x+3}}\) tìm giá trị lớn nhất
a: \(Q=\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{a+2\sqrt{a}+1}{a-\sqrt{a}}\)
Cho \(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(ĐK:0< a< 1\right)\)
a, Rút gọn Q ( câu này viết kq với hướng làm thôi cũng được !)
b, so sánh Q với Q3
Giúp mình với !!! UHUHUHU
a) ĐK: \(0< a< 1\)
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(\sqrt{1+a}+\sqrt{1-a}\right)}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)
\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)
b) Xét: \(Q^3-Q=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)^2\left(a-1-1\right)=\left(a-1\right)^2\left(a-2\right)\)
Do \(a< 1\)=> \(a-2< 0\) và \(a-1< 0\)
nên \(\left(a-1\right)^2\left(a-2\right)< 0\)
=> \(Q^3-Q< 0\)
<=> \(Q^3< Q\)
xin lỗi nhé, câu b mk sai, sửa lại:
\(Q^3-A=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)\left[\left(a-1\right)^2-1\right]\)
\(=\left(a-1\right)\left(a-1-1\right)\left(a-1+1\right)=\left(a-2\right)\left(a-1\right)a\)
Do \(0< a< 1\)nên \(a-2< 0;\)\(a-1< 0\)
=> \(\left(a-2\right)\left(a-1\right)a>0\)
=> \(Q^3-Q>0\)
<=> \(Q^3>Q\)
Cho biểu thức \(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a/ Rút gọn M với \(a>0,a\ne1\)
b/ So sánh M với 1
c/ Tính giá trị M khi \(a=3-2\sqrt{2}\)
a) \(M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=1-\dfrac{1}{\sqrt{a}}< 1\)
c) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{\sqrt{3-2\sqrt{2}}-1}{\sqrt{3-2\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}\)
\(a,M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,M=1-\dfrac{1}{\sqrt{a}}< 1\\ c,a=3-2\sqrt{2}\Leftrightarrow\sqrt{a}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\\ \Leftrightarrow M=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}=\dfrac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\)