Cho hình bình hành ABCD. Một đường thẳng qua A lần lượt cắt BD ở I, BC ở J và CD ở K.a. So sánh ID/IBvà IK/IA b. Chứng minh: IA^2= IJ . IK c. Chứng minh:DC/DK= BJ/BC
cho hình bình hành abcd một đường thẳng đi qua a lần lượt cắt bd ở i bc tại j và cd tại k a) so sánh ib/id và dc/dk b)ia^2=ij.ik c) cmr dc/dk=bi/bc
Cho hình bình hành ABCD, qua A kẻ tia Ax giao BD tại I, giao BC tại J, giao CD tại K
a)So sánh \(\dfrac{IB}{ID}và\)\(\dfrac{IA}{IK}\); \(\dfrac{IB}{ID}và\dfrac{IJ}{IA}\)
b)Chứng minh \(IA^2=IJ.IK\)
a, từ đề ta suy ra được : 3 điểm K; C;J trùng nhau.
từ t/c hbh => AK=BD
=> \(\dfrac{IB}{ID}=\dfrac{IA}{IK}\)
Áp dụng đl ta-lét vào tam giác ADK có :\(\dfrac{IJ}{IA}=\dfrac{AD}{DK}\)
Áp dụng đl ta-lét vào tam giác CDK có :\(\dfrac{IB}{ID}=\dfrac{BK}{DK}\)
mà AD và BK = nhau => \(\dfrac{IB}{ID}=\dfrac{IJ}{IA}\)
b/ từ đề bài ta đã có : 3 điểm gồm K;C;J trùng nhau tại một điểm
=> IJ.IK=IC.IC=\(IC^2\)
dựa vào t/c hbh 2 đường chéo cắt nhau tại trug điểm mỗi đường sẽ có:
IA=IC
từ trên suy ra : \(IA^2=IC^2\)
hay nói cách khác:\(IA^2=IJ.IK\) ( đpcm)
CHO HÌNH BÌNH HÀNH ABCD. QUA A VẼ TIA Ax CẮT CẠNH BC Ở J, CẮT DB Ở I VÀ CẮT TIA DC Ở K. CM IA2=IJ*IK VÀ KD*BJ KHÔNG ĐỔI
Giúp mình 2 câu nhé
1. Cho tam giác ABC. Dựng các trung tuyến AM và BN. Cho góc CAM = CBN = 30°
a) Hai tam giác AMC và BNC đồng dạng. So sánh AC và BC
b) Tìm tính chất của tam giác AMC và ABC ( đều và nửa đều)
2. Cho hình bình hành ABCD. Qua A kẻ tia Ax gặp BD, BC và CD theo thứ tự tại I, K, J.
a) So sánh các tỉ số IB/ID, IA/IK, IJ/IA
b) Chứng minh IA2 = IJ . IK
Cho hình thang ABCD ( AB // CD), IA = ID. Qua I kẻ IK // AB cắt BC ở K. Chứng minh rằng IK = AB+CD/2
giúp mình với ạ, mình đang cần gấp
Xét hình thang ABCD có
I là trung điểm của AD
IK//AB//CD
Do đó: K là trung điểm của BC
Xét hình thang ABCD có
I là trung điểm của AD
K là trung điểm của BC
Do đó: IK là đường trung bình của hình thang ABCD
Suy ra: \(IK=\dfrac{AB+CD}{2}\)
CHO HÌNH BÌNH HÀNH ABCD. QUA A VẼ TIA Ax CẮT CẠNH BC Ở J, CẮT DB Ở I VÀ CẮT TIA DC Ở K. CM IA2=IJ*IK VÀ KD*BJ KHÔNG ĐỔI
Hình: Tự vẽ
+) Vì AB // DK, áp dụng hệ quả định lí Ta-let ta có: \(\frac{IK}{IA}=\frac{ID}{IB}\left(1\right)\)
Vì AD // BJ, áp dụng hệ quả định lí Ta-let ta có: \(\frac{ID}{IB}=\frac{AI}{\text{IJ}}\left(2\right)\)
Từ (1), (2) \(\Rightarrow\frac{IA}{\text{IJ}}=\frac{IK}{IA}\)
\(\Rightarrow IA^2=\text{IJ}.IK\left(\text{đ}pcm\right)\)
Cho hình thang ABCD ( AB//CD ). Gọi E, F lần lượt là trung điểm của AD và BC. ĐƯờng thẳng EF cắt BD ở I. cắt AC ở K.
a) Chứng minh AK=KC; BI=IK
b) Cho AB=6, CD=10. Tính EI, KF, IK.
a/ Chứng minh rằng AK=KC,BI=ID
Vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
b/ CHo AB=6cm,CD=10cm.Tính độ dài EI,KF,IK
EI=KF=1/2.AB=1/2.6=3 (đường trung bình tam giác)
FE=(AB+CD)/2= (10+6)/2=8
IK= FE-EI-KF=8-3-3=2
Cho hình bình hành ABCD , kẻ đường thẳng đi qua A cắt BD ở I, cắt tia BC ở J và cắt tia DC ở K .
a) CMR : AI.ID = IB.IK
b) CMR: IA^2 = IJ.IK
c) CMR: AI/AJ = ID/IB và AI/AK = IB/BD
d) CMR : 1/AJ + 1/AK = 1/AI
Bài 9: Cho hình thang ABCD (AB // CD). Gọi E và F lần lượt là trung điểm của AD và BC. Đường thắng EF cắt BD tại I, cắt AC tại K.
a) Chứng minh: AK = KC, BI = ID
b) Cho AB = 6, CD = 10. Tính EI, KF, IK.
hình thang ABCD (AB // CD) , E và F lần lượt là trung điểm của AD và BC
=>EF là đường trung bình của hình thang ABCD
=> EF // AB (1)
EF // CD (2)
tam giác ABC có F là trung điểm của BC
từ (1) => FK là đường trung bình của tam giác ABC
=> K là trung điểm của AC
=> AK = KC
tam giác ADC có E là trung điểm của AD
từ (2) => FK là đường trung bình của tam giác ADC
=> I là trung điểm của BD
=> BI = ID