Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh Na
Xem chi tiết
Jennie Kim
24 tháng 7 2019 lúc 14:31

A B C D E I O

a, xét tam giác BAE và tam giác BDE có : BE chung

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

AB = BD (gt)

=> tam giác BAE = tam giác BDE (c-g-c)

b, tam giác BAE = tam giác BDE (câu a)

=> góc BAE = góc BDE (đn)

mà óc BAE = 90 do tam giác ABC vuông tại A (gt)

=> góc BDE = 90 

=> ED _|_ BC (đn)

c, tam giác BAE = tam giác BDE (Câu a)

=> AE = DE (đn)

d,  gọi BE cắt CI tại O 

AB = BD (gt)

AI = DC (gt)

AB + AI = BI 

BD + DC = BC

=> BI = BC 

xét tam giác IOB và tam giác COB có : OB chung

góc IBO = góc CBO do BO là phân giác của góc IBC (gt)

=> tam giác IOB = tam giác COB (c-g-c)

=> góc IOB = góc COB (đn)

mà góc IOB + góc COB = 180 (kb)

=> góc IOB = 180 : 2 = 90 

=> BO _|_ CI (đn)

CA _|_ AB do góc BAC = 90 

xét tam giác IBC 

=> ID _|_ BC (tc)

mà ED _|_ BC (câu b)

=> I; E; D thẳng hàng

Thu Hà
Xem chi tiết
Hoàng Thị Ngọc Ánh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 3 2022 lúc 22:47

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

Trần Tuấn Hoàng
5 tháng 3 2022 lúc 9:16

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

Khánh Linh
Xem chi tiết
Nguyễn Trần Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2023 lúc 21:54

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔBMP có

BD vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔBMP cân tại B

=>BA là phân giác của góc MBP

Xét ΔAMP có

AD là đường cao, là đường trung tuyến

Do đó: ΔAMP cân tại A

=>AB là phân giác của góc MAP(1)

Xét ΔAMQ có

AC vừa là đường cao, vừa là đường trung tuyến

Do đó; ΔAMQ cân tại A

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ

=>P,A,Q thẳng hàng

Xét ΔAMB và ΔAPB có

AM=AP

AB chung

BM=BP

Do đó: ΔAMB=ΔAPB

=>góc AMB=góc APB

Xét ΔAMC và ΔAQC có

AM=AQ

góc MAC=góc QAC

AC chung

Do đó: ΔAMC=ΔAQC

=>góc AMC=góc AQC

=>góc AQC+góc AMB=180 độ

mà góc AMB=góc APB

nên góc AQC+góc APB=180 độ

=>BP//QC

=>BPQC là hình thang

d: AM=AP

AM=AQ

Do đó: AP=AQ

mà P,A,Q thẳng hàng

nên A là trung điểm của PQ

Nguyễn Việt Bách
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 14:23

a: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có

BD=CE

góc DBM=góc ECN(=góc ACB)

Do đó; ΔMDB=ΔNEC

=>MD=NE

Xét tứ giác MDNE có

MD//NE

MD=NE

Do đó: MDNE là hình bình hành

=>MN cắt ED tại trung điểm của mỗi đường

=>I là trung điểm chung của MN và ED

b:

Kẻ AH vuông góc BC tại H

ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

Gọi O là giao của AH với đường vuông góc với MN tại I

=>O nằm trên trung trực của BC

=>OB=OC

Xét ΔOMN có

OI vừa là đường cao, vừa là trung tuyến

=>ΔOMN cân tại O

=>OM=ON

Xét ΔOAB và ΔOAC có

OA chung

AB=AC

OB=OC

Do đó: ΔOAB=ΔOAC

=>góc OBA=góc OCA

Xét ΔOBM và ΔOCN có

OB=OC

BM=CN

OM=ON

Do đó: ΔOBM=ΔOCN

=>góc OBM=góc OCN

=>góc OCN=góc OCA=180/2=90 độ

=>OC vuông góc AC

=>O cố định

Thúy Ngân
Xem chi tiết
Thúy Ngân
8 tháng 5 2021 lúc 19:22

giải giúp con mình nhé. Xin cám ơn

 

Song tử ♊
Xem chi tiết
trần nguyễn bảo khánh
Xem chi tiết
Quỳnh Anh Phạm
8 tháng 2 2023 lúc 8:17