Cho tam giác abc vuông tại a ( AB<AC) M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho : MD=MC . C/m : a) tam giác AMD = tam giác BMC b)BD vuông góc với AB c) Gọi N là trung điểm của BC , trên tia đối của tia NA lấy điểm E sao cho NE = NA chứng minh D,B,E thẳng hàng
Cho tam giác ABC vuông tại A. M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho MI = IN.
Chứng minh:
a) Góc BAM bằng góc AMI.
b) Tam giác MIC= tam giác NIC
c) Lấy K thuộc cạnh AB sao cho AK = MI. Chứng minh MK//AC.
d) AM=KI
Cho tam giác ABC cân tại A. AH vuông góc với BC(H € BC)
a) CM HB=HC
b) Trên tia đối BC lấy điểm M. Trên tia đối CB lấy điểm N sao cho BM=CN. Kẻ BH vuông góc với AM tại E, CF vuông góc với AN tại F. Gọi I là giao điểm của EB và FC. CM A, H, I thẳng hàng
cho tam giác ABC . gọi E,D lần lượt là trung điểm của các cạnh AB, AC. trên tia đối tia BD lấy điểm M sao cho DM=DB. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Cmr: a, AM//BC b, Ba điểm M,A,N thẳng hàng c, AB+BC>2BD
Câu 4:
Cho tam giác ABC vuông tại A. Điểm M là trung điểm của cạnh BC. Trên
tia đối của tia MA lấy điểm E sao cho ME=MA
a/ Chứng minh △AMC=△EMB.
b/ Chứng minh AB // CE.
c/ Gọi I là một điểm trên cạnh AC, K là một điểm trên đoạn thẳng EB sao cho AI=EK. Chứng minh rằng ba điểm I, M, K thẳng hàng.
Tam giác ABC vuông tại A, AB= 8cm, AC=6cm
a, tính BC
b, So sánh góc B và góc C
c, Từ điểm M trên cạnh BC kẻ MI vuông AB. Trên tia đối IM lấy điểm N sao cho IM =IN. CM tam giác AMN cân
d, trên tia đối AC lấy điểm K, AK=AC. CM N,K,B thẳng hàng
MÌNH ĐANG CẦN GẤP