Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ghi Manh
Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.a/Chứng minh tam giác ADE là tam giác cân,b/Kẻ BH vuông góc với AD(H thuộc AD),kẻ CK vuông góc với Ả(K thuộc AE).Chứng minh BH=CK,c/Gọi O là giao điểm của BH và CK.Tam giác OBC là tam giác gì?vì sao?
Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 19:32

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

Gaming DemonYT
20 tháng 2 2021 lúc 19:15

Chúc học tốt

ngo tran nam khanh
20 tháng 2 2021 lúc 20:23

a) Ta có: ˆABC+ˆABD=1800ABC^+ABD^=1800(hai góc kề bù)

ˆACB+ˆACE=1800ACB^+ACE^=1800(hai góc kề bù)

mà ˆABC=ˆACBABC^=ACB^(Hai góc ở đáy của ΔBAC cân tại A)

nên ˆABD=ˆACEABD^=ACE^

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

ˆABD=ˆACEABD^=ACE^(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

ˆHDB=ˆKECHDB^=KEC^(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên ˆHBD=ˆKCEHBD^=KCE^(hai góc tương ứng)

mà ˆHBD=ˆOBCHBD^=OBC^(hai góc đối đỉnh)

và ˆKCE=ˆOCBKCE^=OCB^(hai góc đối đỉnh)

nên ˆOBC=ˆOCBOBC^=OCB^

Xét ΔOBC có ˆOBC=ˆOCBOBC^=OCB^(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

 


Các câu hỏi tương tự
Hùng Lê
Xem chi tiết
Hùng Lê
Xem chi tiết
Nguyen Phuong Nga
Xem chi tiết
Tzngoc
Xem chi tiết
Tzngoc
Xem chi tiết
Nguyễn Thảo
Xem chi tiết
Tường Vy
Xem chi tiết
WRC Remix
Xem chi tiết
Lài Vũ
Xem chi tiết