x+2x+3x-19=3x+5
Giải các phương trình sau:
a/ 3x – 2 = 2x – 3
b/ 7 – 2x = 22 – 3x
c) 8x – 3 = 5x + 12
d/ x – 12 + 4x = 25 + 2x – 1
e/ x + 2x + 3x – 19 = 3x + 5
a) \(PT\Leftrightarrow3x-2x=2-3\Leftrightarrow x=-1\)
Vậy: \(S=\left\{-1\right\}\)
b) \(PT\Leftrightarrow-2x+3x=-7+22\Leftrightarrow x=15\)
Vậy: \(S=\left\{15\right\}\)
c) \(PT\Leftrightarrow8x-5x=3+12\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy: \(S=\left\{5\right\}\)
d) \(PT\Leftrightarrow x+4x-2x=12+25-1\Leftrightarrow3x=36\Leftrightarrow x=12\)
Vậy: \(S=\left\{12\right\}\)
e) \(PT\Leftrightarrow x+2x+3x-3x=19+5\Leftrightarrow3x=24\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=12
=>x=4
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=36
=>x=12
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
Giải phương trình: x + 2x + 3x – 19 = 3x + 5
x + 2x + 3x – 19 = 3x + 5
⇔ x + 2x + 3x – 3x = 5 + 19
⇔ 3x = 24
⇔ x = 8.
Vậy phương trình có nghiệm x = 8.
7+2x=22-3x
x-12+4x=25+2x-1
7-(2x+4)=-(x+4)
8x-3=5x+12
x+2x+3x-19=3x+5
(x-1)-(2x-1)=9-x
Gọi a,b,c,... cho dễ nhé!
a,\(7+2x=22-3x\)
\(\Leftrightarrow2x+3x=22-7\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
Vậy...
b,\(x-12+4x=25+2x-1\)
\(\Leftrightarrow x+4x-2x=25-1+12\)
\(\Leftrightarrow3x=36\)
\(\Leftrightarrow x=12\)
Vậy...
c,\(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow-2x+x=-4+4-7\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Vậy...
d,\(8x-3=5x+12\)
\(\Leftrightarrow8x-5x=12+3\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
Vậy...
e,\(x+2x+3x-19=3x+5\)
\(\Leftrightarrow x+2x+3x-3x=5+19\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
Vậy...
f,\(\left(x-1\right)-\left(2x-1\right)=9-x\)
\(\Leftrightarrow x-1-2x+1=9-x\)
\(\Leftrightarrow x-2x+x=9-1+1\)
\(\Leftrightarrow0x=9\) (Vô lý)
Vậy...
a, \(7+2x=22-3x\)
\(\Rightarrow7+2x-22+3x=0\)
\(\Rightarrow5x-15=0\)
\(\Rightarrow5x=15\Rightarrow x=3\)
b, \(x-12+4x=25+2x-1\)
\(\Rightarrow3x-12-24-2x=0\)
\(\Rightarrow x-36=0\Rightarrow x=36\)
c, \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Rightarrow7-2x-4=-x-4\)
\(\Rightarrow3-2x+x+4=0\)
\(\Rightarrow-x=-7\Rightarrow x=7\)
d, \(8x-3=5x+12\)
\(\Rightarrow8x-3-5x-12=0\)
\(\Rightarrow3x-15=0\)
\(\Rightarrow3x=15\Rightarrow x=5\)
e, \(x+2x+3x-19=3x+5\)
\(\Rightarrow6x-19-3x-5=0\)
\(\Rightarrow3x-24=0\)
\(\Rightarrow3x=24\Rightarrow x=8\)
f, \(\left(x-1\right)-\left(2x-1\right)=9-x\)
\(\Rightarrow x-1-2x+1-9+x=0\)
(hình như câu này bị sai đề rồi, bạn xem lại đề nhé)
Chúc bạn học tốt!
tìm x, biết:
A, x2 + 5x + 6 = 3x 34 + 2x -9
B, 2\(\sqrt{x}\)+ 8x + 5 = 5x - 4 + 3x + 19
C, 5\(\sqrt{x}\)+ 2x - 8 = 5x + 4 - 3x - 19
Bài 1 : giải phương trình
a) (x-2)(x+2)-(2x+1)2=x(2-3x)
b) 2x(x+2)2-8x2=2(x-2)(x2+2x+4)
c) (x-2)3+(3x-1)(3x+1)=(x+1)3
d) 5(2x-3)-4(5x-7)=19-2(x+1)2
a: \(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
=>-6x-5=0
=>-6x=5
hay x=-5/6
b: \(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)
=>8x+16=0
hay x=-2
c: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)
=>9x-10=0
hay x=10/9
d: \(\Leftrightarrow10x-15-20x+28=19-2x^2-4x-2\)
\(\Leftrightarrow-10x+13+2x^2+4x-17=0\)
\(\Leftrightarrow2x^2-6x-4=0\)
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
giải các phương trình sau
1/ 7x-5=13-5x
2/ 19+3x=5-18x
3/ x^2+2x-4=-12+3x+x^2
4/ -(x+5)=3(x-5)
5/ 3(x+4)=(-x+4)
1/ \(7x-5=13-5x\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy: \(S=\left\{\dfrac{3}{2}\right\}\)
==========
2/ \(19+3x=5-18x\)
\(\Leftrightarrow21x=-14\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy: \(S=\left\{-\dfrac{2}{3}\right\}\)
==========
3/ \(x^2+2x-4=-12+3x+x^2\)
\(\Leftrightarrow-x=-8\)
\(\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
===========
4/ \(-\left(x+5\right)=3\left(x-5\right)\)
\(\Leftrightarrow-x-5=3x-15\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy: \(S=\left\{\dfrac{5}{2}\right\}\)
==========
5/ \(3\left(x+4\right)=\left(-x+4\right)\)
\(\Leftrightarrow3x+12=-x+4\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Vậy: \(S=\left\{-2\right\}\)
[----------]
1. \(7x-5=13-5x\) \(\Leftrightarrow12x=18\Leftrightarrow x=\dfrac{3}{2}\)
2. \(19+3x=5-18x\Leftrightarrow21x=-14\Leftrightarrow x=-\dfrac{2}{3}\)
3. \(x^2+2x-4=-12+3x+x^2\Leftrightarrow-x=-8\Leftrightarrow x=8\)
4. \(-\left(x+5\right)=3\left(x-5\right)\Leftrightarrow-x-5=3x-15\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)
5. \(3\left(x+4\right)=-x+4\Leftrightarrow3x+12=-x+4\Leftrightarrow4x=-8\Leftrightarrow x=-2\)
1) Ta có: \(7x-5=13-5x\)
\(\Leftrightarrow12x=18\)
hay \(x=\dfrac{3}{2}\)
2) Ta có: \(19+3x=5-18x\)
\(\Leftrightarrow21x=-14\)
hay \(x=-\dfrac{2}{3}\)
3) Ta có: \(x^2+2x-4=x^2+3x-12\)
\(\Leftrightarrow3x-12=2x-4\)
hay x=8
4) Ta có: \(-\left(x+5\right)=3\left(x-5\right)\)
\(\Leftrightarrow-x-5-3x+15=0\)
\(\Leftrightarrow-4x=-10\)
hay \(x=\dfrac{5}{2}\)
rút gọn rồi tính giá trị của biểu thức sau với x=-19 A=(3x+2)^2+(2x-7)^2-2(3x+2)(2x+5)
Sửa: \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)
\(A=\left(3x+2\right)^2-2\left(3x+2\right)\left(2x-7\right)+\left(2x-7\right)^2\)
\(A=\left[\left(3x+2\right)-\left(2x-7\right)\right]^2\)
\(A=\left(3x+2-2x+7\right)^2\)
\(A=\left(x+9\right)^2\)
Thay \(x=-19\) vào A ta có:
\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)
Vậy: ...
Giải các phương trình:
a)x−12+4x=25+2x−1x−12+4x=25+2x−1 b) x+2x+3x−19=3x+5;
a) x−12+4x=25+2x−1x−12+4x=25+2x−1
⇔5x – 12 = 2x + 24
⇔5x – 2x = 24 + 12
⇔3x = 36
⇔x = 12
Vậy phương trình có nghiệm x = 12.
b) x+2x+3x−19=3x+5x+2x+3x−19=3x+5
⇔6x – 19 = 5x +3x
⇔3x= 24
⇔x= 8
Vậy phương trình có nghiệm x = 8.
a) x−12+4x=25+2x−1x−12+4x=25+2x−1
⇔5x – 12 = 2x + 24
⇔5x – 2x = 24 + 12
⇔3x = 36
⇔x = 12
Vậy x=12 là nghiệm của phương trình
b) x+2x+3x−19=3x+5x+2x+3x−19=3x+5
⇔6x – 19 = 5x +3x
⇔3x= 24
⇔x= 8
Vậy x=8 là nghiệm của phương trình
\(x^2+5x+6=3x+3\cdot4+2x-9\)
\(2\sqrt{x}+8x+5=5x-4+3x+19\)
\(5\sqrt{x}+2x-8=5x+4-3x-19\)
\(2x^2+5z+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(2\sqrt{3x}+11x-18=5x+2+6\cdot\sqrt{3x}+6x-21\)