Cho hàm số \(y=-\left(m^2+5m\right)x^3+6mx^2+6x-5\)
XĐ m để hs đơn điệu trên R. Khi đó, hs ĐB hay NB? Tại sao?
giải cho em câu này với ạ:
tìm m để hs y=(m/3)x^3-(m-1)x^2+3(m-2)+1/3 đb trên (2;+oo)
hình như đạo hàm nhưng em ms hk lớp 9 lên ko bt
1.y=\(\dfrac{1}{3}x^3-2mx^2+3x+1\) tìm m để hs có cực đại, cực tiểu
2. y=\(x^3-mx^2+\left(m^2-6\right)x+1\) tìm m để hs đạt cực trị tại x=1, khi đó hs là điểm cực đại hay cực tiểu
cho hs y=(m-2)x+5 a)tìm đk của M để hs đồng biến b)tìm m để đths đi qua A(1;3) c)vẽ đths với m=3
Cho hàm số (m+2)x2 (m≠ -2). Tìm giá trị của m để
a) HS đồng biến với x < 0
b) HS y có giá trị bằng 4 khi x=-1
a) Hàm số đồng biến với x<0 => a<0
a<0 <=> m+2<0 <=> m<-2
b) Ta có y=(m+2)x2
Thay y=4; x=-1 ta có :
4=(m+2).(-1)2
4=m+2
m=4-2
m=2
1.tìm m để hs y=\(\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
2. có bn số nguyên m để hs y=\(x^3+mx-\dfrac{1}{5x^2}\) đồng biến trên \(\left(0;+\infty\right)\)
3. có bn số nguyên m để hs y=\(\dfrac{mx-4}{x-m}\) tăng trên \(\left(0;+\infty\right)\)
Bài 1: Cho hs y=(3m-1)x+m-2 có đths (d)
a) Tìm m để hs nghịch biến
b) Tìm m để hs có dạng y=ax
c) Tìm m để (d) đi qua N(-1;1)
d) Tìm m để (d) cắt đường thẳng y =2x-1 tại điểm có hoành độ=1
e) Tìm m để (d)// đường thẳng y=5x+1
f) Tìm m để (d) cât đường thẳng y=2x-2020
g) Tìm m để (d) vuông góc đường thẳng y=1/4x-2019
h) Tìm m để (d) cắt đường thẳng y=8x-5 tại một điểm thuộc trục tung (trục Oy)
Mời các bạn thử sức :P
P/s: Bài này thì không có chắc tại cũng mới học qua
\(a)\) Hàm số trên nghịch biến
\(\Leftrightarrow3m-1< 0\)
\(\Leftrightarrow3m< 1\)
\(\Leftrightarrow m< \frac{1}{3}\)
Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến
\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)
\(\Leftrightarrow m-2=0\)
\(\Leftrightarrow m=2\)
\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths
Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)
\(\Leftrightarrow-3m+1+m-2=1\)
\(\Leftrightarrow-2m-1=1\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)
\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)
Ta có: \(y=2.1-1\)
\(\Leftrightarrow y=2-1=1\)
\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)
Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)
Ta có: \(\left(3m-1\right)1+m-2=1\)
\(\Leftrightarrow3m-1+m-2=1\)
\(\Leftrightarrow4m-3=1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)
\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)
\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)
\(\Leftrightarrow3m-1\ne-2\)
\(\Leftrightarrow3m\ne3\)
\(\Leftrightarrow m\ne1\)
Vậy \(m\ne1\)
\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)
\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung
\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)
Vậy không tìm được giá trị \(x\)nào TMĐK
Cho hs y= x^3-mx^2 +3(m-1)x+1 Tìm m để: a, Hs có cực đại cực tiểu |Xcd-Xct|=2 b, hs đạt cực đại tại x=2 c, hs đồng biến tren R d, hs đồng biến tren(1;dương vô cùng) e, hs nghịch biến trên đoạn có độ dài trên trục bằng 2
Cho HS y = x^3 - (2m-1).x^2 + (2-m).x +2. Tìm m để HS có cực đại, cực tiểu và các điểm cực trị của HS có hoành độ dương.
\(y'=3x^2-2\left(2m-1\right)x+2-m\)
Hàm có các cực trị dương khi pt \(y'=0\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(2m-1\right)^2-3\left(2-m\right)>0\\x_1+x_2=\dfrac{2\left(2m-1\right)}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-m-5>0\\m>\dfrac{1}{2}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{5}{4}< m< 2\)