trên đoạn thẳng AB lấy 2016 điểm khác nhau và khác A;B. M điểm nằm ngoài đường thẳng AB. nối M với các điểm ở trên. Tính số hình tam giác tạo thành
trên đoạn thẳng AB lấy 2016 điểm khác nhau và khác A;B. M điểm nằm ngoài đường thẳng AB. nối M với các điểm ở trên. Tính số hình tam giác tạo thành
( giúp với )
Cứ 2 điểm trên đoạn AB nối với điểm M thì tạo thành một hình tam giác nên có bao nhiêu cặp điểm (1 cặp điểm có 2 điểm) thì có bấy nhiêu hình tam giác
Ta có:
- 2016 cách chọn điểm thứ nhất
- 2015 cách chọn điểm thứ 2 ( khác điểm thứ nhất)
Vậy có số hình tam giác là: 2016 x2015:2= 2031120 ( hình tam giác)
Đáp số: 2031120 hình tam giác
Cho đường thẳng xy. Từ một điểm O trên đường thẳng xy, ta vẽ hai tia Oz và Ot như Hình 2.
a) Lấy điểm A bất kì trên tia Oz (A khác O), lấy điểm B bất kì trên tia Ot (B khác O), vẽ đoạn thẳng AB.
b) Đoạn thẳng AB có cắt đường thẳng xy hay không?
a)
b) Đoạn thẳng AB cắt đường thẳng xy
c. (2x-1)2015 + (2x-1)2017 = 0
trên đoạn thẳng AB lấy 2016 điểm khác nhau đặt tên theo thứ tự từ A đến B là : A1; A2 ; A3 ;... ; A2016. TỪ điểm M không nằm trên đoạn thẳng AB ta nối M với các điểm A ; A1 ; A2 ; A3 ;...; A2016 ; B. tính số tam giác tạo thành .
c,
=> (2x-1)^2015 . [(2x-1)^2 - 1] = 0
=> 2x-1=0 hoặc (2x-1)^2-1 = 0
=> x=1/2 hoặc x=1 hoặc x=0
Tk mk nha
Con tham khảo bài tương tự tại link dưới đây nhé:
Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6 - Học toán với OnlineMath
Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B) sao cho A M = x , B N = y , x + y = 8 . Biết A B = 6 , góc giữa hai đường thẳng a và b bằng 60 0 . Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp M N > 8 ).
A. 2 21
B. 12
C. 2 39
D. 13
a) Vẽ lần lượt đoạn thẳng AB, tia AB, đường thẳng AB trên cùng một hình;
b) Lấy điểm I thuộc đoạn thẳng AB (I khác A và B) và điểm N không thuộc đường thẳng AB;
c) Vẽ các đoạn thẳng NA, NB và tia NI.
Trên cạnh O x của góc xOy lấy 12 điểm, trên cạnh Oy lấy 2003 điểm, các điểm đều khác O và đôi 1 khác nhau. Vẽ tất cả các đoạn thẳng nối các điểm đã lấy trên O x với các điểm đã lấy trên Oy. Biết rằng không có 3 đoạn nào cùng đi qua 1 điểm khác với đầu của các đoạn thẳng. Hãy tính số giao điểm của các đoạn thẳng
( Không kể các giao điểm tại đầu của các đoạn thẳng ).
trên đoạn thẳng AB lấy 2006 điểm khác nhau đặc tên theo thứ tự....
trên đoạn thẳng AB lấy 2006 điểm khác nhau đặt tên theo thứ tự tù A đến B là
trên đoạn thẳng AB lấy 2006 điểm khác nhau đặt tên theo thứ tự tù A đến B là
Đề sai à?
GIÚP EM VỚI Ạ
Cho nửa đường tròn tâm O có đường kính AB. Lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung KB (M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM, BM lần lượt tại H và D. Đường thẳng BH căt nửa đường tròn tại điểm thứ hai N. Chứng minh 1) Tứ giác ACMD là tứ giác nội tiếp. 2) CA.CB = CH.CD 3) Ba điểm A, N, D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DHa, Xét (O) có :
^AMB = 900 ( góc nt chắn nửa đường tròn )
=> ^DMA = 900
Xét tứ giác ACMD có :
^ACD = ^DMA = 900
mà 2 góc này kề nhau, cùng nhìn cạnh AD
Vậy tứ giác ACMD là tứ giác nt 1 đường tròn
b, Vì tứ giác ACMD là tứ giác nt 1 đường tròn
=> ^HNM = ^HDM ( góc nt cùng chắn cung HM ) (1)
^BNM = ^MAB ( góc nt cùng chắn cung BM ) (2)
Từ (1) ; (2) => ^HDM = ^MAB
Xét tam giác CAH và tam giác CDB có :
^ACH = ^DCB = 900
^CAH = ^CDB ( cmt )
Vậy tam giác CAH ~ tam giác CDB (g.g)
=> CA/CD = CH/BC => AC.BC = CH.CD