Chứng minh rằng đa thức \(x^2+3x+10\) không có nghiệm
Chứng Minh Rằng : Đa thức h(x) = x^2 + 3x + 10 không có nghiệm
Ta có:\(x^2+3x+10=x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2+10-\left(\frac{3}{2}\right)^2\)
\(=\left(x+\frac{3}{2}\right)^2+10-\frac{9}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\) nên đa thức vô nghiệm
Ta có: h(x)=x^2+3x+10
=x^2+1,5x+1,5x+2,25+7,75
=x(x+1,5)+1,5(x+1,5)+7,75
=(x+1,5)(x+1,5)+7,75
=(x+1,5)^2+7,75
Vì (x+1,5)^2>=0 với mọi x
Nên (x+1,5)^2+7,75>0 hay h(x)>0
Do đó h(x) vô nghiệm (Đpcm)
chứng minh rằng đa thức A(x) = 3x^4 + x^2 + 2018 không có nghiệm
a) Tìm nghiệm đa thức A(x) = 3x - 1
b) Chứng minh rằng đa thức B(x) = x^5 + x + 1 không có nghiệm
a) Cho \(A\left(x\right)=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(\frac{1}{3}\)là nghiệm của đa thức
b) Đề sai, vì đa thức trên có nghiệm!
chứng minh rằng đa thức 2x^10+x^8+2 không có nghiệm
Ta có 2x^10 >= 0 ; x^8 >= 0 ; 2 > 0
=> 2x^10 + x^8 + 2 > 0
Vậy pt ko có nghiệm
Vì `x^10 = (x^2)^5 >=0, x^8 = (x^2)^6` >=0, 2 >0`
`=> x^10 + x^8 + 2 >= 0 + 0 + 2 = 2 > 0`
`=>` Đa thức vô nghiệm
Đặt \(2x^{10}+x^8+2=0\)
Mà \(\left\{{}\begin{matrix}2x^{10}\ge0\\x^8\ge0\end{matrix}\right.\) \(;\forall x\)
\(\rightarrow2x^{10}+x^8+2\ge2>0\)
--> đa thức không có nghiệm
Chứng minh rằng đa thức P(x)= x^3 - 3x + 5 không có nghiệm nguyên.
Lời giải:
Giả sử $P(x)$ có nghiệm $a$ nguyên. Khi đó:
$a^3-3a+5=0$
$\Leftrightarrow a(a^2-3)=-5$
Khi đó ta xét các TH sau:
TH1: $a=1; a^2-3=-5$
$\Leftrightarrow a=1$ và $a^2=2$ (vô lý)
TH2: $a=-1; a^2-3=5$
$\Leftrightarrow a=-1; a^2=8$ (vô lý)
TH3: $a=5; a^2-3=-1$
$\Leftrightarrow a=5$ và $a^2=2$ (vô lý)
TH4: $a=-5; a^2-3=1$
$\Leftrightarrow a=-5$ và $a^2=4$ (vô lý)
Vậy điều giả sử là sai, tức $P(x)$ không có nghiệm nguyên.
chứng minh rằng đa thức sau không có nghiệm :f(x)=2x^2+2x+10
ta có:\(x\ge0\Rightarrow2x^2\ge0\)
\(\Rightarrow2x^2+2x\ge0\)
mà 10 > 0
\(=>2x^2+2x+10>0\)
hayf(x) ko có nghiệm
cho các đa thức P=\(^{x^3-3x^4+4x-2}\), Q(x) =\(3x^4-x^2+2x-4\), R(x)=\(x^3-3x^2-16\)
a) tính f(x)= p(x)+Q(x)-R(x)
b) chứng minh rằng 1 là nghiệm của đa thức P(x) Q(x) nhưng không là nghiệm của R(x)
c)chứng minh rằng f(x) không có nghiệm
cho đa thức P(x)=x^4-3x^3-4x^2+2x -1. Chứng minh rằng P(x) không có nghiệm là số nguyên
Giả sử đa thức P(x) có nghiệm nguyên
=>P(x) có nghiệm chia hết cho 1 hoặc -1
=>1 và -1 là nghiệm
+) Nếu x=1
⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1
⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1
⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1
⇒P(1)=−9≠0⇒P(1)=-9≠0
⇒x=1 không phải là nghiệm của P(x)P(x)
+) Nếu x=−1
⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1
⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1
⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1
⇒P(−1)=1≠0⇒P(-1)=1≠0
⇒x=−1 không phải là nghiệm của P(x)P(x)
Vậy P(x) không có nghiệm là số nguyên
Chứng minh rằng đa thức x2 + 6x +10 không có nghiệm.
ta có \(x^2+6x+10=x^2+6x+9+1=\left(x^2+6x+9\right)+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\)nên \(\left(x+3\right)^2+1\ge1\)
Vì \(\left(x+3\right)^2+1\ge1\)nên không có nghiệm
Vậy \(x^2+6x+10\)không có nghiệm
\(x^2+6x+10\)
\(=x^2+3x+3x+3.3+1\)
\(=x\left(3+x\right)+3\left(3+x\right)+1\)
\(=\left(3+x\right)\left(3+x\right)+1\)
\(=\left(3x+1\right)^2+1\)
\(\text{Vi}:\left(3+x\right)^2\ge0\)
\(\Rightarrow\left(3+x\right)^2+x>1\)
=> Đa thức ko có nghiệm