cho tam giác ABC (hình vẽ) có AM=MP=PB; AN=NQ=QC.
A) tìm trên hình vẽ những tam giác có diện tích bằng nhau .giải thích tại sao ?
b)biết diện tích tam giác AMN =5cm vuông .tính diện tích tứ giác MNPQ và diện tích tam giác ABC.
cho tam giác ABC (hình vẽ) có AM=MP=PB; AN=NQ=QC.
A) tìm trên hình vẽ những tam giác có diện tích bằng nhau .giải thích tại sao ?
b)biết diện tích tam giác AMN =5cm vuông .tính diện tích tứ giác MNPQ và diện tích tam giác ABC.
a) Diện h tam giác ABC là :
7,2 x 7,5 : 2 = 27 ( cm2 )
b) Nối P với C
Xét hai tam giác APC và ABC
Chung chiều cao hạ từ đỉnh C xuống cạnh AB
PA = 2/3 AB
=> SAPC = SABC x 2/3 = 27 x 2/3 = 18 ( cm2 )
Xét 2 tam giác APQ và APC
Chung chiều cao hạ từ đỉnh P xuống cạnh AC
AQ = 1/4 AC
=> SAPQ = SAPC X 1/4 = 18 x 1/4 = 4,5 ( cm2 )
Đáp số : 4,5 cm2
bn wiiiiiiiii có đúng ko zậy
a) Diện h tam giác ABC là :
7,2 x 7,5 : 2 = 27 ( cm2 )
b) Nối P với C
Xét hai tam giác APC và ABC
Chung chiều cao hạ từ đỉnh C xuống cạnh AB
PA = 2/3 AB
=> SAPC = SABC x 2/3 = 27 x 2/3 = 18 ( cm2 )
Xét 2 tam giác APQ và APC
Chung chiều cao hạ từ đỉnh P xuống cạnh AC
AQ = 1/4 AC
=> SAPQ = SAPC X 1/4 = 18 x 1/4 = 4,5 ( cm2 )
Đáp số : 4,5 cm2
꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂
cho hình tam giác abc trên cạnh ab lấy điểm m sao cho AM = 1/2 BM ; trên cạnh AC lấy điểm N sao cho AN = 1/3 NC ; BN cắt CM tại P.
a) So sánh diện tích tam giác PBC với diện tích tam giác ABC
b) Tính tỉ số độ dài PB so với PN
((Vẽ hình ra giùm mình nha))
Bài 3: Cho tam giác ABC cân tại A có M là trung điểm của BC. a. Chứng minh: ∆AMB=∆AMC b. Chứng minh: AM vuông BC c. Kẻ MN vuông AB tại N, kẻ MP vuông AC tại P. Chứng minh: MN=MP Vẽ hình giúp luôn. Cảm ơn bạn 🤩
Cho tam giác ABC= tam giác MNP. Biết AB+BC=7 cm; MB-NP=3 cm, MP=4 cm. Tính chú vi của mỗi tam giác? ( có vẽ hình)
Sửa đề: MN-NP=3cm
ΔABC=ΔMNP
=>AB=MN; BC=NP; AC=MP
MN-NP=3
=>AB-BC=3
mà AB+BC=7
nên \(AB=\dfrac{3+7}{2}=5cm;BC=AB-3=5-3=2cm\)
MP=AC
mà MP=4cm
nên AC=4cm
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=5+4+2=11\left(cm\right)\)
Chu vi tam giác MNP là:
\(C_{MNP}=MN+NP+MP=5+4+2=11\left(cm\right)\)
a, Chứng minh rằng MP = MQ và AP = AQ.
b, Đường thẳng PQ có vuông góc với AM không? Vì sao?
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có
AM chung
\(\widehat{PAM}=\widehat{QAM}\)
Do đó: ΔPAM=ΔQAM
=>PA=QA và MP=MQ
b: AP=AQ
=>A nằm trên đường trung trực của PQ(1)
MP=MQ
=>M nằm trên đường trung trực của PQ(2)
Từ (1) và (2) suy ra AM là đường trung trực của PQ
=>AM\(\perp\)PQ
cho tam giác NMP cân tại N .trên tia đói của tia MP lấy điểm A, trên tia đối của tia PM lấy điểm B sao cho MA = PB . a CMR tam giác NAB là tam giác cân. b kẻ MH vuông góc NA [ H thộc NA ] kẻ PK vuông góc NB [ K thuộc NB ]. CM MH = PK . Có vẽ hình và làm cả câu a b nha mọi người và làm gấp giúp mình với mình đang cần gấp
a: Xét ΔNMA và ΔNPB có
NM=NP
\(\widehat{NMA}=\widehat{NPB}\)
MA=PB
Do đó: ΔNMA=ΔNPB
Suy ra: NA=NB
hay ΔNAB cân tại N
b: Xét ΔNHM vuông tại H và ΔNKP vuông tại K có
NM=NP
\(\widehat{HNM}=\widehat{KNP}\)
Do đó: ΔNHM=ΔNKP
Suy ra: MH=PK
cho tam giác abc vuông tại a có ab =5 ac =12 . vẽ trung tuyến am của tam giác abc . trên tia đối của tia am lấy điểm k sao cho mk =ma
a, vẽ hình
b,chứng minh tam giác mkc =tam giác mab .từ đó suy ra kc vuông góc vs ac
c, tính độ dài am
b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .
=> AM = BM = CM = KM .
Xét \(\Delta MKC\) và \(\Delta MAB\) có :
\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)
=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )
- Xét tứ giác ABKC có :
AM = BM = CM = KM và tam giác ABC vuông tại A .
=> Tứ giác ABKC là hình chữ nhật.
=> KC vuông góc với AC .
c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)
Cho tam giác ABC,gọi M là trung điểm của BC,biết AM là trung điểm của BC,biết AM=1/2 BC.Chứng minh tam giác ABC là tam giác vuông (có vẽ hình)
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A