Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
b. x2+2xy – 9+ y2
c..
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
c. x2+2xy – 9+ y2
d. x2 - y2 -x + y
\(a,x\left(x+6\right)\\ b,\left(9x-1\right)\left(9x+1\right)\\ c,\left(x+y\right)-3^2\\ =\left(x+y-3\right)\left(x+y+3\right)\\ d,\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\)
Câu 1
Thực hiện các phép tính:
a..
b.( 2x - y)( 6x2 + 3xy -1).
c.(4x3 y4- xy): xy.
Câu 2
(2,0 điểm)
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
c. x2+2xy – 9+ y2
d..
Câu 2:
a: =x(x+6)
b: =(3x-1)*(3x+1)
c: \(=\left(x+y\right)^2-9=\left(x+y+3\right)\left(x+y-3\right)\)
d: \(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)
Câu 1
Thực hiện các phép tính:
a.3x2y ( 5xy - 3xy2 +2xy2 )
b.( 2x - y)( 6x2 + 3xy -1).
c.(4x3 y4- xy): xy.
Câu 2
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
c. x2+2xy – 9+ y2
d. x2 - y2 -x + y
trời dài thế làm lâu phết đó nha hừm làm theo đúng công thức là được :)
b) 24x^2+6x^2y−2x−12yx−3y^2x+y
tôi làm theo cách tìm tích số
nếu thấy đúng thì tick cho tôi nha
Phân tích các đa thức sau thành nhân tử:
a,5x2 - 5xy + 7y - 7x ;
b,x2 + 2xy + x + 2y ;
c,x2 - 6x - 9y2 + 9 ;
a: =5x(x-y)-7(x-y)
=(x-y)(5x-7)
b: =x(x+2y)+(x+2y)
=(x+2y)(x+1)
c; =(x-3)^2-9y^2
=(x-3-3y)(x-3+3y)
a
\(5x^2-5xy+7y-7x\\ =5x\left(x-y\right)+7\left(y-x\right)\\ =5x\left(x-y\right)-7\left(x-y\right)\\ =\left(5x-7\right)\left(x-y\right)\)
b
\(x^2+2xy+x+2y\\ =x\left(x+2y\right)+\left(x+2y\right)\\ =\left(x+1\right)\left(x+2y\right)\)
c
\(x^2-6x-9y^2+9\\ =x^2-6x+9-\left(3y\right)^2\\ =x^2-2.x.3+3^2-\left(3y\right)^2\\ =\left(x-3\right)^2-\left(3y\right)^2\\ =\left(x-3-3y\right)\left(x-3+3y\right)\)
Phân tích đa thức thành nhân tử:
a)-5x+20x2
b)-x2+2x-1+y2
c)6x2-x-2
\(a,=5x\left(4x-1\right)\\ b,=y^2-\left(x-1\right)^2=\left(y-x+1\right)\left(y+x-1\right)\\ c,=6x^2+3x-4x-2=3x\left(x+2\right)-2\left(x+2\right)=\left(3x-2\right)\left(x+2\right)\)
Bài 7: Phân tích đa thức thành nhân tử:
a, 4x2 - 1
b, x2 -3y2
c, 9x2 -1/4
d, (x-y)2 -4
e, 9 - (x-y)2
f, (x2 + 4)2 - 16x2
a) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(9x^2-\dfrac{1}{4}\)
\(=\left(3x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d) \(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
e) \(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3+x-y\right)\left(3-x+y\right)\)
f) \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
Phân tích các đa thức sau thành nhân tử [ làm các bước luôn ạ, chứ đừng có ra kết quả ko thoi ạ ( - _ - ) ]
a/ 3x2 - 6x
b/ x2 - 2x + 1 - y2
c/ 9x3 - 9x2y - 4x + 4y
d/ x3 - 2x2 - 8x
a) \(3x^2-6x\)
\(=3x\left(x-2\right)\)
b) \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(9x^3-9x^2y-4x+4y\)
\(=\left(9x^3-9x^2y\right)-\left(4x-4y\right)\)
\(=9x^2\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(9x^2-4\right)\)
\(=\left(x-y\right)\left(3x-2\right)\left(3x+2\right)\)
a)\(3x^2-6x=3x\left(x-2\right)\)
b)\(x^2-2x+1-y^2=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left[\left(x-1\right)-y\right]\left[\left(x-1+y\right)\right]=\left(x-1-y\right)\left(x-1+y\right)\)
c)\(9x^3-9x^2y-4x+4y=\left(9x^3-9x^2y\right)-\left(4x-4y\right)=9x^2\left(x-y\right)-4\left(x-y\right)=\left(x-y\right)\left(9x^2-4\right)=\left(x-y\right)\left[\left(3x\right)^2-2^2\right]=\left(x-y\right)\left(3x-2\right)\left(3x+2\right)\)
d)\(x^3-2x^2-8x=x\left(x^2-2x-8\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x8 + x4 + 1
b) x12 - 3x6 - 1
c) 3x4 + 10x2 - 25
d) x2 - 5y2 - y4 + 2xy - 9
Lời giải:
a.
$x^8+x^4+1=(x^4)^2+2x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
b.
$x^{12}-3x^6-1=(x^6-\frac{3}{2})^2-\frac{13}{4}$
$=(x^6-\frac{3}{2}-\frac{\sqrt{13}}{2})(x^6-\frac{3}{2}+\frac{\sqrt{13}}{2})$
c.
$3x^4+10x^2-25=(3x^4+15x^2)-(5x^2+25)$
$=3x^2(x^2+5)-5(x^2+5)=(x^2+5)(3x^2-5)$
$=(x^2+5)(\sqrt{3}x-\sqrt{5})(\sqrt{3}x+\sqrt{5})$
c.
$x^2-5y^2-y^4+2xy-9$
$=(x^2+2xy+y^2)-(y^4+6y^2+9)$
$=(x+y)^2-(y^2+3)^2$
$=(x+y+y^2+3)(x+y-y^2-3)$
\(a,x^8+x^4+1\\ =\left(x^8+2x^4+1\right)-x^4\\ =\left(x^4+1\right)^2-x^4\\ =\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ b,x^{12}-3x^6-1\\ =\left(x^{12}-2x^6+1\right)-x^6-2\\ =\left(x^6-1\right)^2-x^6-2\\ =\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)-2???\\ c,3x^4+10x^2-25\\ =4x^4-\left(x^4-10x^2+25\right)\\ =4x^4-\left(x^2-5\right)^2\\ =\left(2x^2-x^2+5\right)\left(2x^2+x^2-5\right)\\ =\left(x^2+5\right)\left(3x^2-5\right)\\ d,x^2-5y^2-y^4+2xy-9\\ =\left(x^2+2xy+y^2\right)-\left(y^4+6y^2+9\right)\\ =\left(x+y\right)^2-\left(y^2+3\right)^2\\ =\left(x+y+y^2+3\right)\left(x+y-y^2-3\right)\)
a) x8+x4+1 = (x4+1)2-x4 = (x4-x2+1)(x4+x2+1)
b) x12-3x6-1 = (x6-1)2-x6 = (x6-x3-1)(x6+x3-1)
c) 3x4+10x2-25 = 4x4-(x4-10x2+25) = 4x4- (x2-5)2 = (x2+5)(3x2-5)
d) x2-5y2-y4+2xy-9 = (x+y)2-(y2+3)2 = (x+y-y2-3)(x+y+y2+3)
Bài 1. Phân tích các đa thức sau thành nhân tử:
a. 12x3y – 24x2y2 + 12xy3 | b. x2 - 2xy – x2 + 4y2 | c. x2 – 2x - 4y2 + 1 | d. x2 + 3x – 18 |
e. x2 – 6 x +xy - 6y | f. x2 + 2x + 1 - 16 | g. x2 – 2x -3 | h. x2 - 8x +15 |
i. 2x2 + 2xy - x - y | j. x2 - 4x + 4 - 25y2 | k. x2 + 4x -12 | l. x2 + 6x +8 |
m. ax – 2x - a2 +2a | n. x2 - 6xy + 9y2 -25z2 | o. x2 + x – 6 | p. x2 -7 x + 6 |
q. x3- 3x2 + 3x -1 | r. 81 – x2 + 4xy – 4y2 | s. x2 -5x -6 | t. 3x2 - 7x + 2 |
u. 3x2 - 3y2 - 12x – 12y | v. x2 +6x –y2 +9 | w. x2 - 8 x – 9 | x. x4 + 64 |
b: \(=\left(x-y\right)^2-4y^2\)
\(=\left(x-y-2y\right)\left(x-y+2y\right)\)
\(=\left(x-3y\right)\left(x+y\right)\)
c: \(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)