So sánh:
a) $2 \sqrt{3}$ và $\sqrt{13}$;
b) 7 và $3 \sqrt{5}$;
c) $\dfrac{1}{3} \sqrt{51}$ và $\dfrac{1}{5} \sqrt{150}$;
d) $\dfrac{1}{2} \sqrt{6}$ và $6 \sqrt{\dfrac{1}{2}}$.
So sánh A = \(\sqrt{17}-\sqrt{15}\) và B = \(\sqrt{15}-\sqrt{13}\)
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
Cho A = \(\sqrt{12}-\sqrt{11}\) , B = \(\sqrt{14}-\sqrt{13}\) . so sánh A và B
\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)
mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)
nên A>B
So sánh: \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\) và \(\sqrt{3}+1\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
1.so sánh
\(a.3\sqrt[3]{2}và\sqrt[3]{55}\)
\(b.3\sqrt[3]{4}và2\sqrt[3]{13}\)
So sánh
a) 5 và \(\sqrt{11}\)
b) \(\sqrt{13}\) và 4
c) -7 và -\(\sqrt{43}\)
d) -\(\sqrt{21}\) và -5
Mình chọn nhầm lớp 8 chứ thật ra câu hỏi ở bên lớp 9
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)
So sánh
a)\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\) và\(\sqrt{3}+1\)
b)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) và \(\sqrt{\sqrt{5}-1}\)
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
So Sánh a,\(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\)và 6,9 \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{7}-\sqrt{6}\)
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
So sánh:
a)\(\sqrt{6}\) và 2,(45)
b)\(\sqrt{13+17}\) và \(\sqrt{13}+\sqrt{17}\)
c)4-\(\sqrt{29}\) và \(\sqrt{15}-\sqrt{30}\)
so sánh \(\frac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\)
Ta có :\(-2\sqrt{3}>-2\sqrt{4}=-4\) =>\(-2\sqrt{3}>-4\)
\(\frac{13-2\sqrt{3}}{6}>\frac{13-4}{6}=\frac{3}{2}=\sqrt{\frac{9}{4}}>\sqrt{\frac{8}{4}}=\sqrt{2}\)
<=>\(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)