1+1=3
2+2=6
3+3=...
Chứng minh rằng:
1+a+a^2+a^3+...+a^62+a^63=(1+a)(1+a^2)(1+a^4)...(1+a^32)
a) 3^6÷3^2+2^3×2^2
b) (2100-63)÷21
c) 32×59+41×32
d) 99-97+95-93+91+89+...+9-5+3-1
a) 3 ^ 6 : 3 ^ 2 + 2 ^ 3 + 2 ^ 2
= 36 - 2 + 23 + 2
= 34 + 25 = 81 + 32
= 113 .
b) ( 2100 - 63 ) : 21
= 2037 : 21
= 97 .
c) 32 x 59 + 41 x 32
= 32 x ( 59 + 41 )
= 32 x 100
= 3200 .
d) 99 - 97 + 95 - 93 + 91 - 89 + ... + 7 - 5 + 3 - 1 ( 50 so = 25 hieu )
= 2 + 2 + 2 + ... + 2 + 2 = 2 x 25
= 50 .
a) \(3^6:3^2+2^3.2^2=3^4+2^5=113\)
b) \(\left(2100-63\right):21=2037:21=97\)
c) \(32.59+41.32=32.\left(59+41\right)=32.100=3200\)
d) \(99-97+95-93+........+9-7+5-3+1=2+2+...+2+1=25.2+1=50+1=51\)
giải giúp mik bài này nha
12x-33=3^2.3^3
CM: \(1+x^2+x^3+...+x^{63}=\left(1+x\right).\left(1+x^2\right).\left(1+x^4\right)....\left(1+x^{32}\right)\)
Đặt \(A=\left(1+x\right)\left(1+x^2\right)...\left(1+x^{32}\right)\)
\(\Rightarrow\left(1-x\right)A=\left(1-x\right)\left(1+x\right)\left(1+x^2\right)...\left(1+x^{32}\right)\)
\(=\left(1-x^2\right)\left(1+x^2\right)...\left(1+x^{32}\right)=\left(1-x^4\right)\left(1+x^4\right)...\left(1+x^{32}\right)\)
\(=\left(1-x^8\right)\left(1+x^8\right)...\left(1+x^{32}\right)=\left(1-x^{16}\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\)
\(=\left(1-x^{32}\right)\left(1+x^{32}\right)=1-x^{64}\)
Vậy \(A=\frac{1-x^{64}}{1-x}\)
Sửa đề nhé:
Đặt \(B=1+x+x^2+...+x^{63}\)
\(\Rightarrow B\cdot x=x+x^2+x^3+...+x^{64}\)
\(\Rightarrow B-B\cdot x=1-x^{64}\)
\(\Rightarrow B\left(1-x\right)=1-x^{64}\)
\(\Rightarrow B=\frac{1-x^{64}}{1-x}\)
Vậy A = B ta có đpcm
32+63*a*a(a*1-a:1)+32*8+32=?
Tính tổng S=1/2+3/4+7/8+15/16+31/32+63/64+127/128-6
Ta có :
\(S=\left(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}\right)-6\)
\(S=\left(\frac{64}{128}+\frac{102}{128}+\frac{112}{128}+\frac{120}{128}+\frac{124}{128}+\frac{126}{128}+\frac{127}{128}\right)-6\)
\(S=\frac{64+102+112+120+124+126+127}{128}-6\)
\(S=\frac{775}{128}-6\)
\(S=\frac{775}{128}-\frac{768}{128}\)
\(S=\frac{7}{128}\)
S=1/2+3/4+7/8+15/16+31/32+63/64+127/128 -6
S= 1-1/2 + 1-1/4 + 1-1/8 + 1-1/16 + 1-1/32 + 1-1/64+ 1-1/128 - 6
S= (1+1+1+1+1+1+1-6)- (1/2+1/4+1/8+1/16 + 1/32+1/64+1/128)
S= 1- 111/128
S= 17/128
(Làm lụi nha bn)
S=1/128
-Học tốt-
#TLQA
CMR: 1+a+a2+a3+....+a63 = (1+a)(1+a2)(1+a4).....(1+a32)
HELP ME!!! PLEASE!!
Ta có :
\(1+a+a^2+....+a^{63}\)
\(=\left(1+a\right)+a^2\left(1+a\right)+....+a^{62}\left(1+a\right)\)
\(=\left(1+a\right)\left(1+a^2+a^4+....+a^{62}\right)\)
\(=\left(1+a\right)\left[\left(1+a^2\right)+a^4\left(1+a^2\right)+.....+a^{60}\left(1+a^2\right)\right]\)
\(=\left(1+a\right)\left(1+a^2\right)\left(1+a^4+....+a^{60}\right)\)
.....
\(=\left(1+a\right)\left(1+a^2\right).....\left(1+a^{32}\right)\)
CMR: 1+a+a2+a3+....+a63 = (1+a)(1+a2)(1+a4).....(1+a32)
HELP ME!!! PLEASE!!
Có \(\left(1+a\right)\left(1+a^2\right)...\left(1+a^{32}\right)=\frac{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)
\(=\frac{\left(a^2-1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)
\(...\)
\(=\frac{\left(a^{32}-1\right)\left(a^{32}+1\right)}{a-1}\)
\(=\frac{a^{64}-1}{a-1}\)
\(=\frac{\left(a-1\right)\left(a^{63}+a^{62}+...+a^2+a+1\right)}{a-1}\)
\(=a^{63}+a^{62}+...+a^2+a+1\)
Vậy ...
ta có (a-1)(1+a+a2+......+a63)=a64-1
(a-1)(a+1)(a2+1)....(a32+1)=a64-1
trần thùy duy bạn phải chừng minh rằng nó đúng khi a=1
Tìm x biết
2x/15+2x/35+2x/63+....+2x/195=4/5
Chứng minh rằng 1/2-1/4+1/8-1/16+1/32-1/1/64<1/3
\(\dfrac{2x}{15}+\dfrac{2x}{35}+\dfrac{2x}{63}+...+\dfrac{2x}{195}=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{195}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{13\cdot15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\dfrac{4}{15}=\dfrac{4}{5}\\ x=\dfrac{4}{5}:\dfrac{4}{15}\\ x=3\)
Gọi \(D=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(2D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\\ 2D+D=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\\ 3D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\\ 3D=1-\dfrac{1}{64}< 1\\ \Rightarrow D=\dfrac{1-\dfrac{1}{64}}{3}< \dfrac{1}{3}\)
Vậy \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
Tính một vế bằng 0:
32+63×a×(a×1-a:1)+32×8+32
0+1=1
1+2=3
3+4=7
7+8=15
15+16=31
31+32=63
viết 15 dòng với quy luật như z