19837630 : 3755 x 65
8kg 3755 g = ..... kg
Biểu thức nào sau đây có giá trị bằng biểu thức (35 + 65) x 527?
A. 35 + 65 x 527
B. 35 + 527 x 65 + 527
C. 35 x 527 + 65 x 527
D. 35 x 527 + 65
bài 3. Tính nhanh
( 3.5 x 11.25 + 11.25 x 6.5 ) x ( 65 x 11 - 65 : 0.1 : 65 )
\(\left(3,5\times11,25+11,25\times6,5\right)\times\left(65\times11-65:0,1:65\right)\\ =\left[11,25\times\left(3,5+6,5\right)\right]\times\left(65\times11-10\right)\\ =\left[11,25\times10\right]\times\left[715-10\right]\\ =112,5\times705\\ =79312,5\)
Tính nhanh : 35 x 34 + 35 x 65 + 65 x 75 + 65 x 45
35 x 34 + 35 x 65 + 65 x 75 + 65 x 45
= ( 35 x 34 + 35 x 65 ) + ( 65 x 75 + 65 x 45 )
= 35 x ( 34 + 65 ) + 65 x ( 75 + 45 )
= 35 x 99 + 65 x 120
= 3465 + 7800
= 11265
\(35.34+35.65+65.75+65.45\)
=\(35.\left(34+65\right)+65.\left(75+45\right)\)
= 35. 99 +65.120
=3465 + 7800
= 11265
x+1/65+x+3/63=x+5/65+x+7/59
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}\) = \(\dfrac{x+5}{61}\) + \(\dfrac{x+7}{59}\)
<=> \(\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1\) = \(\dfrac{x+5}{61}\) + 1 + \(\dfrac{x+7}{59}\) + 1
<=> \(\dfrac{x+66}{65}+\dfrac{x+66}{63}\) = \(\dfrac{x+66}{61}\) + \(\dfrac{x+66}{59}\)
<=> \(\dfrac{x+66}{65}+\dfrac{x+66}{63}\) - \(\dfrac{x+66}{61}\) - \(\dfrac{x+66}{59}\) = 0
<=> (x + 66) . (\(\dfrac{1}{65}+\dfrac{1}{63}+\dfrac{1}{61}+\dfrac{1}{59}\)) = 0
<=> x + 66 = 0
<=> x = -66
3.527 + 65 x 73 + 65 x 27 + 3.573
3,527 + 65 x 73 + 65 x 27 + 3,573
= 3,527 + 65 x ( 73 + 27 ) + 3,573
= 3,527 + 65 x 100 + 3,573
= 3,527 + 6500 + 3,573
= 6507,1
\(3,527+65\times73+65\times27+3,573\\ =\left(3,527+3,573\right)+65\times\left(73+27\right)\\ =7,1+65\times100\\ =7,1+6500\\ =6507,1\)
A =3,527 + 65 \(\times\) 73 + 65 \(\times\) 27 + 3,573
A = (3,527 + 3,573) + (65 \(\times\) 73 + 65 \(\times\) 27)
A = 7,1 + 65 \(\times\) ( 73 + 27)
A = 7,1 + 65 \(\times\) 100
A = 7,1 + 6500
A = 6507,1
20,10 x 35 -19,45 x 65 +20,10 x 65 -19,45 x 35
20,10x35-19,45x65+20,10x65-19,45x35
=(35+65)x20,10+(35+65)x19,45
=100x20,10-100x19,45
=100x(20,10-19,45)
=100x0,65=65
\(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
Đặt \(\hept{\begin{cases}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{cases}}\)
\(\Rightarrow a^2+4b^2=5ab\)
\(\Leftrightarrow\left(b-a\right)\left(4b-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=4b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt[3]{65+x}=\sqrt[3]{65-x}\\\sqrt[3]{65+x}=4\sqrt[3]{65-x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}65+x=65-x\\65+x=4\left(65-x\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=39\end{cases}}\)
giải pt \(\sqrt[3]{\left(65-x\right)^2}+\sqrt[3]{\left(65+x\right)^2}=\sqrt[3]{65^2-x^2}\)
Đặt \(a=\sqrt[3]{\left(65-x\right)};b=\sqrt[3]{65+x}\)
pt<=> \(a^2+b^2=ab\Leftrightarrow\begin{cases}a=0\\b=0\end{cases}\)
nên vô lí
PT vô nghiệm