Tìm MinQ=2x^2+2xy+5y^2-8xy-22y+2021
tìm gtnn 2x^2+2xy+5y^2-8x-22y
Đặt `A=2x^2+2xy+5y^2-8x-22y`
`<=>2A=4x^2+4xy+10y^2-16x-44y`
`<=>2A=4x^2+4xy+y^2-8(2x+y)+9y^2-28y`
`<=>2A=(2x+y)^2-8(2x+y)+16+9y^2-28y+196/9-196/9`
`<=>2A=(2x+y-4)^2+(3y-14/3)^2-196/9>=-196/9`
`<=>A>=-98/9`
Dấu "=" xảy ra khi `y=14/9,x=(4-y)/2=11/9`
Tìm GTNN :F= 2x^2 + 2xy +5y^2 - 8x-22y
\(F=2x^2+2xy+5y^2-8x-22y\)
<=> \(2F=4x^2+4xy+10y^2-16x-44\)
\(=\left(4x^2+4xy+y^2-16x+16-8y\right)+9y^2-36y-16\)
\(=\left(2x+y-4\right)^2+\left(3y-6\right)^2-52\ge-52\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+y-4=0\\3y-6=0\end{cases}}\Leftrightarrow y=2;x=1\)
=> min 2F = -52
=> min F = -26.
B=2X^2+2XY+5Y^2-8X-22Y.
Tìm GTNN hoặc GTLN của biểu thức B
A=2x^2+2xy+5y^2-8x-22y
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Tìm Min:
\(A=x^2+2y^2-2xy-4y+5\)
\(B=5x^2+8xy+5y^2-2x+2y\)
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
Tìm GTNN
A)=2x^2+2xy+5y^2-8x-22y
B)=x^4-2x^3+3x^2-2x+1
........ai trả lời đúng ..mk tick cho nha
CÂU NÀY RẤT DỄ. ANH ĐÃ BIẾT KẾT QUẢ TỪ KHI MỚI NHÌN ĐẦU BÀI: KẾT QUẢ LÀ .Z.O.L.......L.O.Z..............................FDGR...................HAPPY........BEAUTYFULLY.>>>>>,<<<<<<<<< .THẰNG NÀO KO HIỂU CHỨNG TỎ NGU . THANKS
Tìm GTNN
B=2x^2 +2xy + 5y^2 - 8x -22y
\(B=2x^2+2xy+5y^2-8x-22y\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+\left(4y^2-22y+\frac{484}{16}\right)-\frac{185}{4}\)
\(=\left(x+y\right)^2+\left(x-4\right)^2+\left(2y-\frac{22}{4}\right)^2-\frac{185}{4}\ge-\frac{185}{4}\)
Dấu = xảy ra khi :
.........................
Bn tự giải nốt nhé, mk ko bt có đúng hay ko , nếu sai thì thông cảm nha........