Tìm x,y là số tự nhiên biết rằng:
a) (x + 1)(2y - 5) = 143
b) (x - 7)(xy +1) = 9
a) Tìm x, y là số tự nhiên biết: xy + x + 2y = 5
b) Tìm x, y là số nguyên để xy + 2x + 2y = -16
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
a) Ta có xy+x+2y=x(y+1)+2(y+1-1)=x(y+1)+2(y+1)-2=(y+1)(x+2)-2=5 ===> (y+1)(x+2)=7
Lại có: 7=1 . 7=(y+1)(x+2)
Ta có bảng giá trị:
y+1 | 1 | 7 |
x+2 | 7 | 1 |
y | 0 | 6 |
x | 5 | -1 |
câu b bạn làm tuơng tự nha
Tìm các cặp số tự nhiên (x; y) biết:
a) ( x - 1 ) . ( y + 5 ) = 28
b) ( 2x -1 ) . ( y + 1 ) = 30
c) 2y ( x + 1 ) - x - 7 = 0
d) xy - 2x + y = 15
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
8. Làm tính nhân :
a) \(\left(x^2y^2-\frac{1}{2}xy+2y\right)\left(x-2y\right)\)
b) (x2-xy+y2)(x+y)
13. Tìm x, biết :
(12x-5)(4x-1)+(3x-7)(1-16x)=81
14.
Tìm 3 số tự nhiên chẵn liên tiếp, biết tích của 2 số sau lớn hơn tích của 2 số đầu là 192.
Bài 13:
(12x-5)(4x-1)+(3x-7)(1-16x)=81
<=>48x2-12x-20x+5+3x-48x2-7+112x=81
<=>-32x+115x=81+2
<=>83x=83
<=>x=1
Bài 14:
Gọi 3 số chẵn đó lần lượt là: a;(a+2);(a+4)
Theo đề bài ra ta có:
(a+2)(a+4)=a(a+2)+192
=>a2+6a+8=a2+2a+192
=>4a=184
=>a=46
Suy ra 2 số còn lại là 46+2=48 và 46+4=50
Vậy 3 số chẵn liên tiếp thỏa mãn là 46;48;50
Bài 8:
b)(x2-xy+y2)(x+y)
=x3-x2y+xy2+y3-xy2+x2y
=x3+y3
Đây còn là 1 trong các HĐT đáng nhớ
tìm số tự nhiên x,y biết xy+x+2y=5
Tìm số tự nhiên x,y biết xy + x + 2y = 1
xy +x + 2y = 1
x(y+1) + 2y + 2 = 1 + 2 = 3
x(y+1) + 2(y+1) = 3
(y + 1)(x + 2) = 3
3 = 1.3 = 3.1 = -1.-3 = -3.-1
(+) y + 1 = 1 và x + 2 = 3
=> y = 0 và x = 1
(+) y + 1 = 3 và x + 2 = 1
=> y = 2 và x = -1
(+) tương tự
Đây là bài giải phương trình nghiệm nguyên, có thể giải theo hai cách như sau :
Cách 1 :
xy+3x-2y=11
<=>x(y+3) - 2y - 6 =11 - 6
<=>x(y+3) - 2(y+3) = 5
<=> (x-2)(y+3) = 5
=> x - 2 ; y +3 thuộc Ư(5)={±1;±5}
*x-2=1 => x=3
y+3=5 => y=2
*x-2= -1 => x=1
y+3= -5 => y= -8
*x-2=5 => x=7
y+3=1 => y= -2
*x-2= -5 => x= -3
y+3= -1 => y= -4
Vậy (x;y)=(3;2),(1;-8),(7;-2),(-3;-4)
Cách 2 :
xy +3x -2y = 11
x(y+3) = 2y+11
Nếu y= -3 thay vào phương trình, ta có 0x=5 (loại)
Nếu y khác -3 thì :
x= (2y+11) / (y+3)
x = 2 + 5/(y+3) (cái này là chia đa thức ý mà)
mà x thuộc Z
=> 5/(y+3) thuộc Z
=> y+3 thuộc Ư(5)={±1;±5}
=> y thuộc {-2;-4;2;-8}
mà x = 2 + 5/(y+3)
=> x thuộc {7;-3;1;3}
Vậy (x;y)=(3;2),(1;-8),(7;-2),(-3;-4)
Ta có:
xy+x+2y=1
x(y+1)+2y=1
=>x(y+1)+2y+2=1+2
x(y+1)+2(y+1)=3
(x+2)+(y+1)=3
Ta có bảng sau:
x+2 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | -1 | 1 | -3 | -5 |
y | 2 | 0 | -4 | -2 |
Bài 1:
Tìm các số nguyên x,y biết;
a,x.(2y-1)=6y+5 b,xy-2x+3y=4
Bài 2: Tìm các số tự nhiên x,n và số nguyên tố p,q biết:
a,pq+13;5p+q đều là số nguyên tố
b,(x^2+4x+32)(x+4)
1,tìm các số tự nhiên x sao cho các số có dạng sau đều là số tự nhiên
3x + 5 chia hết cho x - 1
2x + 8 chia hết cho 2x + 1
2, tìm x,y thuộc N biết
a, xy = 5 và x > y
b, (x + 1) ( y + 3) = 6
c, ( x - 3) (y + 1) = 7
d, xy + x + 3y = 5
Tìm các số nguyên x; y biết rằng:
a) xy + x + y = 2
b) (x + 1).y + 2 = -5 , (x < y)
a) \(xy+x+y=2\)
\(xy+x+y+1=2+1\)
\(\left(xy+x\right)+\left(y+1\right)=3\)
\(x\left(y+1\right)+\left(y+1\right)=3\)
\(\left(y+1\right)\left(x+1\right)=3\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-3;-1;1;3\right\}\\y+1\in\left\{-1;-3;3;1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-4;-2;0;2\right\}\\y\in\left\{-2;-4;2;0\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\)
b) \(\left(x+1\right).y+2=-5\)
\(\left(x+1\right).y=-5-2\)
\(\left(x+1\right).y=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\in\left\{-7;-1;1;7\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2;0;6\right\}\\y\in\left\{1;7;-7;-1\right\}\end{matrix}\right.\)
Mà \(x< y\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{-8;-2\right\}\\y\in\left\{1;7\right\}\end{matrix}\right.\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-8;1\right);\left(-2;7\right)\)