Chứng minh: Bất đẳng thức: \(4.\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
chứng minh bất đẳng thức \(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
Làm thông thường thoy; khai triển ra xog chuyển vế
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)
\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))
Vậy bđt đã đc chứng minh
cảm ơn nhiều nha. chúng ta kết bạn được không?
theo bđt bu-nhi-a cốp-xki thì
(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)
còn bạn chưa biết thì
<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3
,<=>a^2xb^4+b^2xa^4>=2a^3xb^3
<=>(axb^2-a^2xb)^2>=0(luôn đúng)
chứng minh bất đẳng thức \(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)vớia>0;b< 0\)
\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)
\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)
Chứng minh bất đẳng thức \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a và b là các số dương
Ta biến đối tương đương:
\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow4\left(a+b\right)\left(a^2-ab+b^2\right)\Leftrightarrow\left(a+b\right)\left(a+b\right)^2\)
\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)( chia hia vế cho số dương a+b)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\) là đúng.
Chứng minh bất đẳng thức :
a) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
b) \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)với mọi a, b, c > 0
(Không dùng bất đẳng thức Cô-si)
Chứng minh bất đẳng thức sau: Với a, b, c > 0
\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)
Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\); \(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).
Cộng từng vế 3 bất đẳng thức trên ta được:
\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
=> đpcm.
chứng minh bất đẳng thức
\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
T = (1+a)(1+b)(1+c) = 1 + (a + b + c) + (ab + bc + ac) + abc.
Áp dụng \(A+B+C\ge3\sqrt[3]{ABC}\left(A,B,C\ge0\right)\),
ta có: \(T\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}=\left(1+\sqrt[3]{abc}\right)^3\left(đpcm\right)\)
Chúc bạn học tốt
Chứng minh bất đẳng thức
\(a\left(a+b\right)\left(a+b+c\right)+b^2c^2\ge0\)
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^{\text{4}}\right)\)
Chứng minh: Bất đẳng thức: \(a^3+b^3+3abc\ge ab.\left(a+b+c\right)\) với a, b, c>0
Với $a,b,c>0$ thì $a^3+b^3+3abc> ab(a+b+c)$ chứ không có dấu "=" nhé bạn. Còn về cách làm thì bạn Trương Huy Hoàng đã làm rất chi tiết rồi.
a3 + b3 + 3abc \(\ge\) ab(a + b + c)
\(\Leftrightarrow\) a3 + b3 + 3abc - a2b - ab2 - abc \(\ge\) 0
\(\Leftrightarrow\) a3 + b3 + 2abc - a2b - ab2 \(\ge\) 0
\(\Leftrightarrow\) a2(a - b) - b2(a - b) + 2abc \(\ge\) 0
\(\Leftrightarrow\) (a - b)(a2 - b2) + 2abc \(\ge\) 0
\(\Leftrightarrow\) (a - b)2(a + b) + 2abc \(\ge\) 0 (luôn đúng với mọi a, b, c > 0)
Chúc bn học tốt!
Chứng minh bất đẳng thức:
\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\forall a,b,c\in R\)
Bất đẳng thức cần chứng minh tương đương:
\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)
\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).
Vậy ta có đpcm.
\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh