cho △MNP vuông tại M , trung tuyến ME. kẻ ED vuông góc với MP và EF vuông góc với MN.
vẻ hình.
cho △MNP vuông tại M , trung tuyến ME. kẻ ED vuông góc với MPvà EF vuông góc với MN.
A) tứ giác MDEF là hình gì ? vì sao ?
B) tìm điều kiện của tam giác MNP để tứ giác MDEF là hình vuông.
a: Xét tứ giác MDEF có
\(\widehat{MDE}=\widehat{MFE}=\widehat{DMF}=90^0\)
Do đó: MDEF là hình chữ nhật
b: Để MDEF là hình vuông thì ME là tia phân giác của góc NMP
Xét ΔMNP có
ME là đường phân giác
ME là đường trung tuyến
Do đó: ΔMNP cân tại M
hay MN=MP
Cho tam giác DEF vuông tại E (DE<EF) đường cao EH. Kẻ HI vuông góc ED ( I thuộc ED ), HK vuông góc EF ( K thuộc EF )
a) c/m EIHK là hình chữ nhật
b) Gọi O là trung điểm của HE. C/m I,O,K thẳng hàng
c) Kẻ trung tuyến EN cắt IK tại M. Tính số đo góc EMK
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . Có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF
cho tam giác MNP vuông tại a đường cao MI TỪ I kẻ IE vuông góc với MN , IF vuông góc với MP . O là trung điểm của NP . có tam giác MEF đồng dạng với tam giác MPN .CMR MO vuông góc với EF
a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN
nên \(ME\cdot MN=MI^2\left(1\right)\)
Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP
nên \(MF\cdot MP=MI^2\left(2\right)\)
Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)
hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)
Xét ΔMEF vuông tại M và ΔMPN vuông tại M có
\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)
Do đó: ΔMEF\(\sim\)ΔMPN
tam giác MNP vuông tại M có MN < MP kẻ MQ vuông góc với NP (Q thuộc NP) trên cạnh NP lấy E sao cho ME=MQ. Qua E kẻ đường vuông góc với MP, cắt NP tại F. CMR: MG,KE,NP đồng quy( biết G là trung điểm của KP)
cho tam giác MNP vuông tại M trung tuyến MI . từ I kẻ IK vuông góc với MN tại K, IP' vuông góc với MP tại P. Tứ giác MKIP là hình gì? vì sao .b)Gọi F là trung điểm của MI .CM: K;F;P thẳng hàng .c) Gọi L là điểm đối xứng với I qua P'.CM : MIPL là hình thoi,d)tìm điều kiện của tam giác MNP để tứ giác MIPL là hình vuông
a) ta có :
KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)
suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)
b) ta có : MI = KP (tc hai đường chéo HCN)
suy ra : MF = FI (gt)
KF = P'F = 1/2KP' = 1/2 MF(tc)
vậy 3 đm K,F,P' thẳng hàng
c) ta có :
KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)
suy ra :
KI song song vs MP , có PI = IN (gt)
suy ra : tam giác MNP có KI là ĐBH
suy ra IK bằng 1/2 MP (tc)
có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc) (1)
có IP' = P'L (tc) (2)
mà IL vuông góc vs MP (gt) (3)
vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi
cho tam giác MNP vuông tại N có góc M bằng 60 độ. tia phân giác của góc NMP cắt NP ở E . kẻ EK vuông góc với NP (K thuộc MP). Kẻ PT vuông góc với tia ME ( T thuộc tia ME) CM:
a) tam giác MNE = tam giác MKE
và ME vuông góc với NK
b)KM=Kp
c)EP>MN
d) ba đường thẳng MN,PT,KE đồng quy tại 1 điểm
(ko vẽ hình cx dc ạ)