Tam giác ABC có BC=10cm,các đường trung tuyến BD và CE. Chứng minh rằng BD+CE > 15cm.
Tam giác ABC có BC = 10cm, các đường trung tuyến BD và CE. Chứng minh rằng BD + CE > 15cm.
Gọi G là giao điểm của BD và CE.
Trong ∆GBC, ta có:
GB + GC > BC (bất đẳng thức tam giác)
GB = 2/3 BD (tính chất đường trung tuyến)
GC = 2/3 CE (tính chất đường trung tuyến)
Mà BC = 10 cm (gt)
⇒ BD + CE > 15 (cm).
tam giac ABC có BC=10cm các đường trung tuyến BD và CE , chứng minh BD+CE>15cm
bài 1
cho tam giác ABC có BC=10cm, các đường trung tuyến BD và CE.Chứng minh rằng: BD + CE > 15cm
Cho tam giác ABC có BC = 10cm. Các đường trung tuyến BD và CE có độ dài theo thứ tự bằng 9cm và 12 cm. Chứng minh rằng: BD ⊥ CE
Ai giúp mình với mình sắp phải nộp bài rồi
bài này là bài 94 nâng cao và các chuyên đề toán 7
gọi G là giao điểm của BD và CE
=>G là trọng tâm cua tam giac ABC
=>GB=2/3 BD=6,GC=2/3CE=8
ta có GB^2+GC^2=6^2+8^2=100
màBC^2=10^2=100
nênGB^2+GC^2=BC^2
=>tam giac GBC vuong tai G(dinh li py ta go dao)
=> đpcm
tam giác ABC có BC = 10cm, các đường trug tuyến BD và CE . Chứng minh rằng BD+CE>15 cm
Tam giác ABC có BC = 10cm, các đường trung tuyến BD và CE. Chứng minh rằng BD + CE > 15cm.
Giải:
Gọi giao điểm giữa BD và CE là G
Ta có: \(GC=\dfrac{2}{3}EC\)
\(GB=\dfrac{2}{3}BD\)
\(\Rightarrow GC+GB=\dfrac{2}{3}EC+\dfrac{2}{3}BD\)
\(\Rightarrow GC+GB=\dfrac{2}{3}\left(EC+BD\right)\)
Mà \(GC+GB>BC\)
\(\Rightarrow\dfrac{2}{3}\left(EC+BD\right)>BC=10\left(cm\right)\)
\(\Rightarrow EC+BD>15\left(cm\right)\left(đpcm\right)\)
Vậy...
Gọi G là giao điểm của BD và CE. Theo bất đẳng thức trong tam giác GBC:
GB + GC > BC = 10 cm
\(\Rightarrow\dfrac{2}{3}BD+\dfrac{2}{3}CE>10cm\)
\(\Rightarrow BD+CE>\dfrac{3}{2}.10cm=15\left(cm\right)\).
Tam giác ABC, có BC=10cm. Các đường trung tuyến BD và CE có độ dài theo thứ tự bằng 9cm và 12cm. Chứng minh rằng BD vuông góc vs CE
cho tam giác ABC, các đường trung tuyến BD và CE. cho biết BC = 10cm, BD =9cm, CE = 12cm
a) chứng minh BD vuông góc với CE
b) tính diện tích tam giác ABC
Tam giác ABC có BC = 10cm, các đường trung tuyến BD và CE.
Chứng minh rằng :
BD + CE > 15 cm
Gọi giao điểm của BD và CE là G
=>G là trọng tâm của ΔABC
=>BG=2/3BD; CG=2/3CE
BG+CG>BC
hay BG+CG>10
=>2/3(BD+CE)>10
=>BD+CE>15