Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thành Phát
Xem chi tiết
tthnew
Xem chi tiết
Vũ Đình Thái
11 tháng 1 2021 lúc 20:35

Gọi giao điểm AE và BP là F;

Gọi giao điểm QD và AB là H; 

Gọi kéo dài AD cắt BF tại P'     

Dễ cm M là trung điểm AC

Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)

Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\) 

\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)

Mà CM=AM (vì M là tđ AC)

\(\Rightarrow QD=DH\)

Dễ cm P là trung điểm BF

Xét \(\Delta ABP'\) có DH//BP'

\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)

Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)

\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)

Mà DH=QD (cmt) 

\(\Rightarrow BP'=FP'\)

\(\Rightarrow\)P' là trung điểm BF

\(\Rightarrow P\equiv P'\)

\(\Rightarrow A,D,P\) thẳng hàng

Nguyễn Thanh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:41

Bạn chỉ cần áp dụng cái phân tích đa thức thành nhân tử bằng phương pháo đặt nhân tử chung là ra rồi

Kim Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 9:12

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: góc OIE=góc OCE=90 độ

=>OICE là tứ giác nội tiếp

=>góc OEI=góc OCI

=>góc OEI=góc OCB

OBAC nội tiếp

=>góc OCB=góc OAB

=>góc OEI=góc OAB

=>góc OEI=góc OAI

=>OIAE nội tiếp

Bánh Mì
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:04

1: Xét ΔABE vuông tại B và ΔADC vuông tại D có

\(\widehat{AEB}=\widehat{ACD}\)

Do đó: ΔABE∼ΔADC

Suy ra: \(\dfrac{AB}{AD}=\dfrac{AE}{AC}\)

hay \(AB\cdot AC=AE\cdot AD\)

Đỗ Thương Huyền
Xem chi tiết

nhỏ quá bn !

Vòng Vinh Van
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 19:33

Phương trình đường thẳng d' qua M và vuông góc \(\Delta\) (nên nhận \(\left(1;1\right)\) là 1 vtpt) có dạng:

\(1\left(x-3\right)+1\left(y-2\right)=0\Leftrightarrow x+y-5=0\)

Gọi H là giao điểm d' và \(\Delta\Rightarrow\) tọa độ H là nghiệm:

\(\left\{{}\begin{matrix}x-y=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{5}{2};\dfrac{5}{2}\right)\)

M' là ảnh của M qua phép đối xứng trục \(\Rightarrow\) H là trung điểm MM'

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=2\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(2;3\right)\)

Gọi \(d_1\) là ảnh của d qua phép đối xứng trục

Gọi A là giao điểm d và \(\Delta\Rightarrow A\in d_1\), tọa độ A thỏa mãn:

\(\left\{{}\begin{matrix}x+4y-3=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow A\left(\dfrac{3}{5};\dfrac{3}{5}\right)\)

Lấy \(B\left(3;0\right)\) là 1 điểm thuộc d

Phương trình đường thẳng \(\Delta'\) qua B và vuông góc \(\Delta\) có dạng:

\(1\left(x-3\right)+1\left(y-0\right)=0\Leftrightarrow x+y-3=0\)

Gọi C là giao điểm \(\Delta\) và \(\Delta'\Rightarrow\) tọa độ C thỏa mãn:

\(\left\{{}\begin{matrix}x+y-3=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)

B' là ảnh của B qua phép đối xứng trục \(\Delta\Rightarrow B'\in d_1\) và C là trung điểm BB'

\(\Rightarrow\left\{{}\begin{matrix}x_{B'}=2x_C-x_B=0\\y_{B'}=2y_C-y_B=3\end{matrix}\right.\) \(\Rightarrow B'\left(0;3\right)\)

\(\Rightarrow\overrightarrow{AB'}=\left(-\dfrac{3}{5};\dfrac{12}{5}\right)=\dfrac{3}{5}\left(-1;4\right)\)

\(\Rightarrow d_1\) nhận (4;1) là 1 vtpt

Phương trình \(d_1\):

\(4\left(x-0\right)+1\left(y-3\right)=0\Leftrightarrow4x+y-3=0\)

tthnew
Xem chi tiết
Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:26

b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)

Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)

Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)

\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)

 

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 14:34

a) Xét tứ giác ABOC có

\(\widehat{ABO}\) và \(\widehat{ACO}\) là tứ giác nội tiếp

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

\(\widehat{BFE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)

\(\widehat{ABE}\) là góc tạo bởi dây cung BE và tiếp tuyến BA

Do đó: \(\widehat{BFE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{BFA}=\widehat{EBA}\)

Xét ΔBFA và ΔEBA có 

\(\widehat{BFA}=\widehat{EBA}\)(cmt)

\(\widehat{ABF}\) là góc chung

Do đó: ΔBFA∼ΔEBA(g-g)

\(\Leftrightarrow\dfrac{AF}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AF\cdot AE\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBOA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:

\(AB^2=AH\cdot AO\)(2)

Từ (1) và (2) suy ra \(AF\cdot AE=AH\cdot AO\)(đpcm)

Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:43

c Nối OM \(\Rightarrow OM\) vuông góc với EF(do OM là đường nối từ tâm O đến trung điểm của dây cung EF)

\(\Rightarrow\Lambda AMO=\Lambda AHK=90^0\) Mà \(\Lambda OAM=\Lambda KAH\)

\(\Rightarrow\Delta OAM\sim\Delta KAH\left(g.g\right)\) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{AO}{AK}\Rightarrow AM\cdot AK=AH\cdot AO\left(3\right)\)

Từ câu b có \(AH\cdot AO=AE\cdot AF\left(4\right)\)

Từ (3) và (4) \(\Rightarrow AM\cdot AK=AE\cdot AF\Rightarrow\dfrac{1}{AM\cdot AK}=\dfrac{1}{AE\cdot AF}\Rightarrow\dfrac{1}{AK}=\dfrac{AM}{AE\cdot AF}\Rightarrow\dfrac{2}{AK}=\dfrac{2AM}{AE\cdot AF}\Rightarrow\dfrac{AE+AF}{AE\cdot AF}=\dfrac{2}{AK}\Rightarrow\dfrac{1}{AE}+\dfrac{1}{ÀF}=\dfrac{2}{AK}\Rightarrow\dfrac{AK}{AE}+\dfrac{AK}{AF}=2\)

An Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 17:50

\(\dfrac{sin^3x+cos^3x}{sinx+cosx}=\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}\)

\(=sin^2x+cos^2x-sinx.cosx=1-sinx.cosx\)