Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tthnew

Không có mô tả ảnh.

Câu a em giải được rồi ạ. Cần câu b,c thôi/

Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:26

b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)

Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)

Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)

\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)

 

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 14:34

a) Xét tứ giác ABOC có

\(\widehat{ABO}\) và \(\widehat{ACO}\) là tứ giác nội tiếp

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

\(\widehat{BFE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)

\(\widehat{ABE}\) là góc tạo bởi dây cung BE và tiếp tuyến BA

Do đó: \(\widehat{BFE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{BFA}=\widehat{EBA}\)

Xét ΔBFA và ΔEBA có 

\(\widehat{BFA}=\widehat{EBA}\)(cmt)

\(\widehat{ABF}\) là góc chung

Do đó: ΔBFA∼ΔEBA(g-g)

\(\Leftrightarrow\dfrac{AF}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AF\cdot AE\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBOA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:

\(AB^2=AH\cdot AO\)(2)

Từ (1) và (2) suy ra \(AF\cdot AE=AH\cdot AO\)(đpcm)

Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:43

c Nối OM \(\Rightarrow OM\) vuông góc với EF(do OM là đường nối từ tâm O đến trung điểm của dây cung EF)

\(\Rightarrow\Lambda AMO=\Lambda AHK=90^0\) Mà \(\Lambda OAM=\Lambda KAH\)

\(\Rightarrow\Delta OAM\sim\Delta KAH\left(g.g\right)\) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{AO}{AK}\Rightarrow AM\cdot AK=AH\cdot AO\left(3\right)\)

Từ câu b có \(AH\cdot AO=AE\cdot AF\left(4\right)\)

Từ (3) và (4) \(\Rightarrow AM\cdot AK=AE\cdot AF\Rightarrow\dfrac{1}{AM\cdot AK}=\dfrac{1}{AE\cdot AF}\Rightarrow\dfrac{1}{AK}=\dfrac{AM}{AE\cdot AF}\Rightarrow\dfrac{2}{AK}=\dfrac{2AM}{AE\cdot AF}\Rightarrow\dfrac{AE+AF}{AE\cdot AF}=\dfrac{2}{AK}\Rightarrow\dfrac{1}{AE}+\dfrac{1}{ÀF}=\dfrac{2}{AK}\Rightarrow\dfrac{AK}{AE}+\dfrac{AK}{AF}=2\)