Bài 2: Thực hiện phép cộng:
2x+7/x-3+x-4/x-2
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
V . CÁC PHÉP TOÁN VỀ PHÂN THỨC :
Bài 1 : Thực hiện các phép tính sau :
b) x+3/x-2+4+x/2-x
Bài 2 : Thức hiện các phép tính sau :
a) x+1/2x+6+2x+3/x2+3x
d) 3/2x2y +5/xy2 + x/y3
e) x/x-2y +x/x+2y + 4xy/4y2-x2
g) x+3/x+1 +2x-1/x-1 +x+5/X2-1 ;
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
Dạng 4 : Phân thức đại số các phép toán trên phân thức . Bài tập 1 Thực hiện phép tính a,. 2/2x + 3x-3/2x-1 + 2x^2+1/4x^2-2x b, 5/6x^2y +7/12xy^2 + 11/18xy c,. x^3+2x/x^3+1 + 2x/x^2-x+1 + 1/x+1
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
- Bài 12: Thực hiện phép tính
1) x(1 - x) + (x - 1) ^ 2 3) (x + 2) ^ 2 - (x - 3)(x + 1)
5) (x - 2) ^ 2 + (x - 1)(x + 5)
7) (1 - 2x)(5 - 3x) + (4 - x) ^ 2
9) (x + 1) ^ 2 + (x - 2)(x + 2) - 4x
11) (x + 4) ^ 2 + (x + 5)(x - 5) - 2x(x + 1)
13) (x - 1) ^ 2 - 2(x + 3)(x - 3) + 4x(x - 4)
2) (x - 3) ^ 2 - x ^ 2 + 10x - 7
4) (x + 4)(x - 2) - (x - 3) ^ 2
6) (x + 3)(x - 3) - x(23 + x)
8) (x - 2)(x + 2) - (x - 3)(x + 1)
10) (x + 2) ^ 2 - (x + 3)(x - 3) + 10
12) (x - 1) ^ 2 - (x - 4)(x + 4) + (x + 3) ^ 2
14) (y - 3)(y + 3)(y ^ 2 + 9) -(y^ 2 +2)(y
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
thực hiện phép tính
1)2x^2(-3x^2+2x-1)
2)(x-3)(x+7)-(x+5)(x-1)
3)-2x(-3x+2)-(x+2)^2
4)(2x-3)(x^2-2x-4)
1) \(-6x^4+4x^3-2x^2\)
2) \(=x^2+4x-21-x^2-4x+5=-16\)
3) \(=6x^2-4x-x^2-4x-4=5x^2-8x-4\)
4) \(=2x^3-4x^2-8x-3x^2+6x+12=2x^3-7x^2-2x+12\)
Dạng 4 : Phân thức đại số các phép toán trên phân thức . Bài tập 1 Thực hiện phép tính a,. 2/2x + 3x-3/2x-1 + 2x^2+1/4x^2-2x b, 5/6x^2y +7/12xy^2 + 11/18xy c,. x^3+2x/x^3+1 + 2x/x^2-x+1 + 1/x+1 Mn giúp em với ạ. Hãy cho em xin lời giải chi tiết từng bước làm ạ
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
bài 1:
b, thực hiện phép nhân (x mũ2 -8) . (x mũ 3 +2x + 4)
bài 2:
cho đa thức A(x)= -5/3 x mũ 2+ 3/4 x mũ 4 + 2x - 7/3 x mũ 2 -2+4x +1/4x mũ 4
a, thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
b,tìm bậc và hệ số cao nhất của A(x)
Bài 1:
(x² - 8)(x³ + 2x + 4)
= x².x³ + x².2x + x².4 - 8.x³ - 8.2x - 8.4
= x⁵ + 2x³ + 4x² - 8x³ - 16x - 32
= x⁵ - 6x³ + 4x² - 16x - 32
Bài 2
a) A(x) = -5/3 x² + 3/4 x⁴ + 2x - 7/3 x² - 2 + 4x + 1/4 x⁴
= (3/4 x⁴ + 1/4 x⁴) + (-5/3 x² - 7/3 x²) + (2x + 4x) - 2
= x⁴ - 4x² + 6x - 2
b) Bậc của A(x) là 4
Hệ số cao nhất là 1
`1,`
`b,`
`(x^2-8)(x^3+2x+4)`
`= x^2(x^3+2x+4)-8(x^3+2x+4)`
`= x^5+2x^3+4x^2-8x^3-16x-12`
`= x^5-6x^3+4x^2-16x-12`
`2,`
`a,`
`A(x)=-5/3x^2 + 3/4x^4 + 2x - 7/3x^2 - 2 + 4x + 1/4x^4`
`= (3/4x^4+1/4x^4)+(-5/3x^2-7/3x^2)+(2x+4x)-2`
`= x^4-4x^2+6x-2`
`b,`
Bậc của đa thức: `4`
Hệ số cao nhất: `1`.
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{a}{{a - 3}} - \dfrac{3}{{a + 3}}\) b) \(\dfrac{1}{{2x}} + \dfrac{2}{{{x^2}}}\) c) \(\dfrac{4}{{{x^2} - 1}} - \dfrac{2}{{{x^2} + x}}\)
`a, a/(a-3) - 3/(a+3) = (a(a+3) - 3(a-3))/(a^2-9)`
`= (a^2+9)/(a^2-9)`
`b, 1/(2x) + 2/x^2 = x/(2x^2) + 4/(2x^2) = (x+4)/(2x^2)`
`c, 4/(x^2-1) - 2/(x^2+x) = (4x)/(x(x-1)(x+1)) - (2(x-1))/(x(x+1)(x-1))`
`= (2x+2)/(x(x-1)(x+1)`
`= 2/(x(x-1))`