x2 + (3x - 3)(x + 5) = 25
Tìm x,biết:
a)6x2-(2x+5).(3x-2)=-12
b)(x+3).(x2-3x+9)-x.(x2+2)=12-5x
c)x2-25=6x-9
\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)
\(\Leftrightarrow-11x=-22\)
hay x=2
b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)
\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)
\(\Leftrightarrow x=-5\)
C= 2x / x-3 - 3x+9/ x2 - 9
D= (15-x/ x2 - 25 + 2/ x+5 ) : x + 1/ x - 5
\(C=\dfrac{2x}{x-3}-\dfrac{3x+9}{x^2-9}\)
\(C=\dfrac{2x}{x-3}-\dfrac{3\left(x+3\right)}{x^2-3^2}\)
\(C=\dfrac{2x}{x-3}-\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(C=\dfrac{2x}{x-3}-\dfrac{3}{x-3}\)
\(C=\dfrac{2x-3}{x-3}\)
============================
\(D=\left(\dfrac{15-x}{x^2-25}+\dfrac{2}{x+5}\right):\dfrac{x+1}{x-5}\)
\(D=\left(\dfrac{15-x}{\left(x+5\right)\left(x-5\right)}+\dfrac{2\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\right):\dfrac{x+1}{x-5}\)
\(D=\left(\dfrac{15-x+2x-10}{\left(x+5\right)\left(x-5\right)}\right):\dfrac{x+1}{x-5}\)
\(D=\left(\dfrac{x+5}{\left(x+5\right)\left(x-5\right)}\right):\dfrac{x+1}{x-5}\)
\(D=\dfrac{1}{x-5}:\dfrac{x+1}{x-5}\)
\(D=\dfrac{1}{x-5}\cdot\dfrac{x-5}{x+1}\)
\(D=\dfrac{1}{x+1}\)
a) x2(x - 5) + 5 - x = 0; b) 3x4 - 9x3 = -9x2 + 27x;
c) x2(x + 8) + x2 = -8x; d) (x + 3)(x2 -3x + 5) = x2 + 3x.
e) 3x(x - 1) + x - 1 = 0;
f) (x - 2)(x2 + 2x + 7) + 2(x2 - 4) - 5(x - 2) = 0;
g) (2x - 1)2 - 25 = 0;
h) x3 + 27 + (x + 3)(x - 9) = 0.
i)8x3 - 50x = 0; k) 2(x + 3)-x2 - 3x = 0;
m)6x2 - 15x - (2x - 5)(2x + 5) =
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
Bài 5. Tìm x , biết rằng: a) x(x + 5)(x – 5) – (x + 2)(x2 – 2x + 4) = 3
b) (x – 3)3 – (x – 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
c) (x+5)(x2 –5x +25) – (x – 7) = x3
d) (x+2)(x2 – 2x + 4) – x(x2 + 2) = 4
`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`
`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`
Bài 1. Tìm x, biết
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
Bài 2. Rút gọn các biểu thức sau:
A = (x+1)3+(x-1)3
B = (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
Phân tích đa thức thành nhân tử:
a)x2-9+2.(x+3)
b)x2-10x+25-3.(x-5)
c)x3-4x2+3x
a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)
b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)
c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)
Tìm x, biết:
a) 7x2 - 28 = 0
b) \(\dfrac{2}{3}\)x(x2 - 4) = 0
c) 2x(3x - 5) - (5 - 3x) = 0
d) (2x - 1)2 - 25 = 0
a) Ta có: \(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)
mà 7>0
nên (x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-2\right\}\)
b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
mà \(\dfrac{2}{3}>0\)
nên x(x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2;2\right\}\)
c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)
\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)
d) Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-2\right\}\)
a,7x2 - 28 = 0
=> 7x2 = 28 => x2 = 4 => x = 2
b,2/3x(x2 - 4) = 0
=>2/3x(x - 2)(x + 2) = 0
=> x ∈ {0 ; 2 ; -2}
c,2x(3x - 5) - (5 - 3x) = 0
= 2x(3x - 5) + (3x - 5)
= (3x - 5)(2x + 1) = 0
=> x ∈ { 5/3 ; -1/2}
d, (2x - 1)2 - 25 = 0
=> (2x - 4)(2x - 6) = 0
=> x ∈ {2 ;3}
a,7x2 - 28 = 0
=> 7x2 = 28 => x2 = 4 => x = 2
b,2/3x(x2 - 4) = 0
=>2/3x(x - 2)(x + 2) = 0
=> x ∈ {0 ; 2 ; -2}
c,2x(3x - 5) - (5 - 3x) = 0
= 2x(3x - 5) + (3x - 5)
= (3x - 5)(2x + 1) = 0
=> x ∈ { 5/3 ; -1/2}
d, (2x - 1)2 - 25 = 0
=> (2x - 4)(2x - 6) = 0
=> x ∈ {2 ;3}
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18